International Journal of Chemical Studies

P-ISSN: 2349–8528 E-ISSN: 2321–4902 IJCS 2018; 6(2): 3283-3291 © 2018 IJCS Received: 08-01-2018 Accepted: 10-02-2018

Neha Gupta

Department of Chemistry and Biochemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India

Gagan Rani

Department of Chemistry and Biochemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India

Neeru Singh Redhu

Department of Chemistry and Biochemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India

Sudhir Kumar

Department of Chemistry and Biochemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India

Correspondence Neha Gupta Department of Chemistry and Biochemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India

In silico characterization and modelling of *Drosophila melanogaster* krotzkopf verkehrt protein

Neha Gupta, Gagan Rani, Neeru Singh Redhu and Sudhir Kumar

Abstract

Chitin synthase is known to be an important enzyme that catalyzes last step of chitin biosynthetic pathway. It causes linear polymerization of chitin from activated UDP-N-acetylglucosamine monomers in manner joined together by β -(1, 4)-linked. Chitin synthases are thus critical enzymes for synthesis of chitin and as well as for growth and development of insects. In this study, physiochemical properties and modeling of isoforms of chitin synthase (krotzkopf verkehrt protein) which are encoded by kkv genes were analyzed using *in silico* approach. Physiochemical properties such as molecular weight, theoretical isoelectric point, extinction coefficient, aliphatic index, instability index, total number of negatively and positively charged residues and grand average of hydrophathicity were computed. Along with these physiochemical properties cellular localilization, no. of transmembrane helices, other proteins with which these isoforms interact were also depicted using various tools.

Keywords: modelling, characterization, krotzkopf verkehrt, protein

Introduction

After cellulose, chitin is earth's second most abundant organic compound and is synthesized by a broad variety of organisms of different taxonomic groups. Chitin is found not only in arthropods including insects, arachnids and crustaceans but also in lower invertebrates such as sponges, coelenterates, nematodes and molluscs (Merzendorfer, 2011)^[2]. Chitin is a linear polymer of N-acetyl- β-D-glucosamine and is a major component of insect cuticle and peritrophic matrices. Chitin is found in the exo- and endocuticle or in the newly secreted, unsclerotized procuticle but not in the epicuticle, the outermost part of the integument. Insects cuticles form an exoskeleton that exhibits only a limited capacity to keep pace with body growth because it is a more or less rigid structure due to the presence of chitin and sclerotized proteins. To allow growth and development, insects are therefore periodically forced to replace their old cutical with a new one during molting (ecdysis). Chitin functions as light but mechanically strong scaffold material and is always associated with cuticle proteins that mainly determine the mechanical properties of the cuticle (Merzendorfer and Zimoch, 2003) ^[3]. Chitin is also an integral part of insect peritrophic matrices which functions as a permeability barrier between the food bolus and the midgut epithelium, enhance digestive processes and protect the brush border from mechanical disruption as well as from attack by toxins and pathogens (Tellam, 1996). Thus, insect growth and development is strictly dependent on the capability to remode chitinous structures. Therefore, insects consistently synthesize and degrade chitin in a highly controlled manner to allow ecdysis nad regeneration of the peritrophic matrices. Formation of the different forms of chitin is catalyzed by chitin synthase (CHS) (EC 2.4.1.16), a highly conserved enzyme found in every chitin synthesizing organism. Krotzkopf verkehrt (kkv) gene encodes the Drosophila chitin synthase enzyme. Inhibiting the chtin synthase encoded by kky gene leads to disruption of chtin bio synthetic path way (Ostrowski, 2002)^[5]. Thus chtin synthases represents an attractive target site for combating insects pests as insect growth and development are strictly dependent on precisely tuned chitin biosynthesis and this pathway is absent in humans and other vertebrates.

Methodology

Sequence retrieval

The amino acid sequences of various isoforms of krotzkopf verkehrt protein (Isoform A, C and D) were retrieved from NCBI having the accession number NP_52433.1, NP_9961521.1,

and NP_730928.2 respectively. The characterization of various isoforms was done by using bioinformatics tools *in silico*.

Characterization of target sequence

The physiochemical property of the protein was determined by using Protparam tool such as molecular weight, theoretical pI, total number of negatively and positively charged amino acids, amino acid composition of the protein, extinction coefficient, aliphatic index and GRAVY index. The subcellular localization of the protein was found out using Cello v2.5. The transmembrane helices were predicted using TMHMM tool of Expasy. Signal P 4.1 server was used to check if the protein is a signal peptide or not. Motifs and Domain in the protein was identified using the conserverd domain search of NCBI database and the STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database was used to identify proteins interacting with the sodium channel protein. Multiple sequence alignment of all the isoforms of both the proteins was done using CLUSTAL OMEGA. Secondary structure prediction was done using SOPMA. Ab initio modelling was carried out using phyre 2 server.

Results and Discussion

The results of Protparam tool showed that the molecular

weight of all the three isoforms of krotzkopf verkehrt protein is same. Theoretical pI of the three is forms of krotzkopf verkehrt protein have a the ortical pI of 6.7. Total no. of negatively charged (Asp+Glu) residues in the isoform A & C of krotzkopf verkehrt protein is 187 and total number of positively charged (Lys+Arg) residues is 174 leaving them with total charge of -13 whereas isoform D has total negative charge of 186 and total positive charge is 173, with total charge of -13.Extinction coefficient (in M⁻¹ cm⁻¹ & at 280 nm measured in water) for the isoforms of krotzkopf verkehrt protein assuming all pairs of Cys residues form cystines is 241835and under same conditions extinction coefficient assuming all Cys residues are reduced for the for all three isoforms was found to be 239960. Extinction coefficient can be used to separate the protein from the solution. The instability index (II) determines the stability of the protein in a test tube and is computed to be 40.22 for the isoforms of kkv protein. Since instability index for all the isoforms is more than 40, it indicates that all the isoforms may be unstable. The value 91.55 of aliphatic index for the isoforms indicates the relative volume of a protein that is occupied by aliphatic side chains which in turn contributes to the increased thermo stability of isoforms of the protein. Negative Grand average of hydropathicity (GRAVY) index value for isoforms of kkv protein points towards their hydrophilic nature.

Table 1: Various physiochemical properties by PROTPARAM

Protein Name		Molecular Weight (Dalton)	Theortical pi	Total Charge	Instability Index	Aliphatic Index	Gravy Index
Krotzkopf Verkehrt Protein	ISOFORM A	182829.51	6.37	-13	40.22	91.55	-0.108
	ISOFORM C	182829.51	6.37	-13	40.22	91.55	-0.108
	ISOFORM D	182829.51	6.37	-13	40.22	91.55	-0.108

Cello v2.5

The sub-cellular localization of the protein was predicted by using the tool Cello v2.5 which shows that all three isoforms

of krotzkopf verkehrt protein are located in inner membrane with isoform D having the highest reliability 2.675.

9	CELLO RESULTS	
SeqID: NP_524233.1 krotzkopf ver	kehrt, isoform A [Drosophila mela	anogaster]
Analysis Report:		
SVM	LOCALIZATION	RELIABILITY
Amino Acid Comp.	Cytoplasmic	0.722
N-peptide Comp.	Extracellular	0.355
Partitioned seq. Comp.	InnerMembrane	0.798
Physico-chemical Comp.	InnerMembrane	0.375
Neighboring seq. Comp.	InnerMembrane	0.952
CELLO Prediction:		
	InnerMembrane	2.644 *
	Cytoplasmic	1.083
	OuterMembrane	0.656
	Extracellular	0.504
	Periplasmic	0.113

CELLO RESULTS

SeqID: NP_996152.1 krotzkopf verkehrt, isoform C [Drosophila melanogaster]

SVM	LOCALIZATION	RELIABILITY
Amino Acid Comp.	Cytoplasmic	0.722
N-peptide Comp.	Extracellular	0.355
Partitioned seq. Comp.	InnerMembrane	0.798
Physico-chemical Comp.	InnerMembrane	0.375
Neighboring seq. Comp.	InnerMembrane	0.952
CELLO Prediction:		
CELLO Prediction:	InnerMembrane	2.644 *
CELLO Prediction:	InnerMembrane Cytoplasmic	2.644 * 1.083
CELLO Prediction:	InnerMembrane Cytoplasmic OuterMembrane	2.644 * 1.083 0.656
CELLO Prediction:	InnerMembrane Cytoplasmic OuterMembrane Extracellular	2.644 * 1.083 0.656 0.504

LTS
phila melanogaster]
ON RELIABILITY
0.700
r 0.357
ane 0.806
ane 0.375
ane 0.954
ane 2.675 *
1.059
rane 0.649
r 0.506
0.110

Fig 1: Cello v2.5 results showing the cellular localization of the respective isoform (field marked as * indicates the cellular localization with the reliability)

TMHMM

The TMHMM tool predicted the total number of transmembrane helices (TMHs) to be 15 in all cases. Expected no. of amino acids in TMHs were found to be same in isoform A & C but differ in case of isoform D and expected

no. of TMHs in first sixty amino acids present in the various isoforms of the protein were found to be 0. The total probability that the N-terminal is on the cytoplasmic side of the membrane for the three isoforms of krotzkopf verkehrt protein was found to be 0.992.

Protein Name		No. Of Predicted TMHs	Expected No. of Aas TMHs	Expected No. of TMHs In First 60 Aas
	ISOFORM A	15	353.06638	0
Krotzko pf verkehrt protein	ISOFORM C	15	353.06638	0
	ISOFORM D	15	352.32925	0

TMHMM

1. # NP_524233.1 Le	ngth: 1615			
2. # NP_524233.1 Nu	umber of predicted TMHs: 1	5		
3. # NP_524233.1 Ex	p number of AAs in TMHs:	353.06638		
4. # NP_524233.1 Ex	p number, first 60 AAs: 0			
5. # NP_524233.1 To	tal prob of N-in: 0.9924	7		
6. NP_524233.1	7. TMHMM2.0	8. inside	9. 1	10. 88
11. NP_524233.1	12. TMHMM2.0	13. TMhelix	14. 89	15. 111
16. NP_524233.1	17. TMHMM2.0	18. outside	19. 112	20. 144
21. NP_524233.1	22. TMHMM2.0	23. TMhelix	24. 145	25. 164
26. NP_524233.1	27. TMHMM2.0	28. inside	29. 165	30. 182
31. NP_524233.1	32. TMHMM2.0	33. TMhelix	34. 183	35. 205
36. NP_524233.1	37. TMHMM2.0	38. outside	39. 206	40. 209
41. NP_524233.1	42. TMHMM2.0	43. TMhelix	44. 210	45. 232
46. NP_524233.1	47. TMHMM2.0	48. inside	49. 233	50. 315
51. NP_524233.1	52. TMHMM2.0	53. TMhelix	54. 316	55. 338
56. NP_524233.1	57. TMHMM2.0	58. outside	59. 339	60. 385
61. NP_524233.1	62. TMHMM2.0	63. TMhelix	64. 386	65. 408
66. NP_524233.1	67. TMHMM2.0	68. inside	69. 409	70. 420

71. NP_524233.1	72. TMHMM2.0	73. TMhelix	74. 421	75. 443
76. NP_524233.1	77. TMHMM2.0	78. outside	79. 444	80. 476
81. NP_524233.1	82. TMHMM2.0	83. TMhelix	84. 477	85. 496
86. NP_524233.1	87. TMHMM2.0	88. inside	89. 497	90. 923
91. NP_524233.1	92. TMHMM2.0	93. TMhelix	94. 924	95. 946
96. NP_524233.1	97. TMHMM2.0	98. outside	99. 947	100. 960
101. NP_524233.1	102. TMHMM2.0	103. TMhelix	104.961	105.980
106. NP_524233.1	107. TMHMM2.0	108. inside	109.981	110. 986
111. NP_524233.1	112. TMHMM2.0	113. TMhelix	114. 987	115. 1006
116. NP_524233.1	117. TMHMM2.0	118. outside	119.1007	120. 1015
121. NP_524233.1	122. TMHMM2.0	123. TMhelix	124. 1016	125. 1038
126. NP_524233.1	127. TMHMM2.0	128. inside	129. 1039	130. 1042
131. NP_524233.1	132. TMHMM2.0	133. TMhelix	134. 1043	135. 1065
136. NP_524233.1	137. TMHMM2.0	138. outside	139. 1066	140. 1287
141. NP_524233.1	142. TMHMM2.0	143. TMhelix	144. 1288	145. 1305
146. NP_524233.1	147. TMHMM2.0	148. inside	149. 1306	150. 1344
151. NP_524233.1	152. TMHMM2.0	153. TMhelix	154. 1345	155. 1367
156. NP_524233.1	157. TMHMM2.0	158. outside	159.1368	160. 1615

Fig 2a: Graphical view of transmembrane helices of isoform A

Table 2b: TMHMM result showing transmembrane helices and their position

TMHMM			
# NP 996152.1 L	ength: 1615		
# NP_996152.1 N	lumber of predicted	TMHs: 1	5
# NP_996152.1 E	xp number of AAs	in TMHs: 1	353.06638
# NP_996152.1 E	xp number, first 60	AAs: 0	
# NP_996152.1 T	otal prob of N-in:	0.99247	7
NP_996152.1	TMHMM2.0	inside	1 88
NP_996152.1	TMHMM2.0	TMhelix	89 111
NP_996152.1	TMHMM2.0	outside	112 144
NP_996152.1	TMHMM2.0	TMhelix	145 164
NP_996152.1	TMHMM2.0	inside	165 182
NP_996152.1	TMHMM2.0	TMhelix	183 205
NP_996152.1	TMHMM2.0	outside	206 209
NP_996152.1	TMHMM2.0	TMhelix	210 232
NP_996152.1	TMHMM2.0	inside	233 315
NP_996152.1	TMHMM2.0	TMhelix	316 338
NP_996152.1	TMHMM2.0	outside	339 385
NP_996152.1	TMHMM2.0	TMhelix	386 408
NP_996152.1	TMHMM2.0	inside	409 420
NP_996152.1	TMHMM2.0	TMhelix	421 443
NP_996152.1	TMHMM2.0	outside	444 476
NP_996152.1	TMHMM2.0	TMhelix	477 496
NP_996152.1	TMHMM2.0	inside	497 923
NP_996152.1	TMHMM2.0	TMhelix	924 946
NP_996152.1	TMHMM2.0	outside	947 960
NP_996152.1	TMHMM2.0	TMhelix	961 980
NP_996152.1	TMHMM2.0	inside	981 986
NP_996152.1	TMHMM2.0	TMhelix	987 1006
NP_996152.1	TMHMM2.0	outside	1007 1015
NP_996152.1	TMHMM2.0	TMhelix	1016 1038
NP_996152.1	TMHMM2.0	inside	1039 1042
NP_996152.1	TMHMM2.0	TMhelix	1043 1065
NP_996152.1	TMHMM2.0	outside	1066 1287

NP_996152.1	TMHMM2.0	TMhelix	1288 1305
NP_996152.1	TMHMM2.0	inside	1306 1344
NP_996152.1	TMHMM2.0	TMhelix	1345 1367
NP 996152.1	TMHMM2.0	outside	1368 1615

Fig 2c: Graphical view of transmembrane helices of isoform D

SignalP 4.0

The SignalP tool predicts whether the protein is a signal peptide or not. Fig. 3a to 3e shows the results of signal for the isoforms of chitin synthase as well as for the isoforms of

krotzkopf verkehrt protein. Results clearly shows that none of the isoform of both the proteins is a signal peptide since the D-score (discrimination score) is lesser than the cutoff in each case.

Measure Position Value Cut off signal peptide?

max. C 65 0.109 max. Y 12 0.115 max. S 2 0.142 mean S 1-11 0.115 D 1-11 0.115 0.450 NO

Fig 3a: SignalP graphical output showing C-score (raw cleavage site score), S-score (signal peptide score), Y-score (combined cleavage site score) for the isoform A

Measure Position Value Cut off signal peptide?

max. C	65	0.	109	
max. Y	12	0.	115	
max. S	2	0.1	142	
mean S	1-1	1 0).115	
D 1-1	1 0.3	115	0.450	NO

Fig 3b: SignalP graphical output showing C-score (raw cleavage site score), S-score (signal peptide score), Y-score (combined cleavage site score) for the isoform C

SignalP-4.1 prediction (euk networks): NP_730928.2

Measure Position Value Cut off signal peptide? max. C 65 0.109 max. Y 12 0.115 max. S 2 0.142 mean S 1-11 0.115 D 1-11 0.115 0.450 NO

Fig 3c: SignalP graphical output showing C-score (raw cleavage site score), S-score (signal pepti de score), Y-score (combined cleavage site score) for the isoform D protein

STRING

STRING predicted that all three isoforms of kertzkopf verkehrt protein interacts with the same proteins such as

Mummy having 520 amino acids, chitin synthase 2 having 1393 amino acids, vermiform, rudimentary and many other proteins as listed in fig. 4.

Your Input:		po	,	9	1				
😑 kkv	Krotzkopf verkehrt (1615 aa)	orho	usior	urenc	nente	ses	ining	logy]	
Predicted Fu	Inctional Partners:	Neight	Gene F	Coocci	Experii	Databá	Textmi	[Homo	Score
🔵 mmy	Mummy (520 aa)				0	•			0.926
🔵 CS-2	Chitin synthase 2 (1393 aa)					٠	٠	٠	0.811
😁 verm	Vermiform (555 aa)				•				0.694
😁 r	Rudimentary; This protein is a "fusion" protein encoding four enzymatic activities of the pyrimidine pathway (GATase, CPSase,								0.689
CG31823	Serine-type carboxypeptidase activity (427 aa)					•			0.684
🔵 obst-B	obstructor-B (337 aa)				•				0.593
🔵 knk	Knickkopf (689 aa)				•				0.582
🔵 serp	Serpentine (541 aa)				•				0.569
🔵 Gfat1	Glutamine-fructose-6-phosphate aminotransferase 1 (694 aa)				0 0				0.555
🔵 Top2	Topoisomerase 2; Control of topological states of DNA by transient breakage and subsequent rejoining of DNA strands (Pub								0.519

Fig 4: STRING results showing the proteins with which isoforms of krotzkopf verkehrt protein interact

International Journal of Chemical Studies

Secondary structure prediction

Secondary structure prediction was done using SOPMA. The results of secondary structure prediction is shown in fig. 5 to 7. Different secondary structures are colour coded with different colours in the sequence, alpha helix(h) with blue, extended strand(e) with red, beta turn (b) with green and random coil(c) with yellow colour in SOPMA. Predicted secondary structure in SOPMA showsthat isoform A & C of

kertzkopf verkehrt protein consists of exactly same percentage of alpha helix, extended strand, beta turn and random coil, whereas the isoform D differs from the other two isoforms in percentage of alpha helix, extended strand and random coil. Higher number of helices makes the protein more flexible for folding that might increase interactions. There are no 3_{10} helix, Pi helix, Beta Bridge, bend region or ambiguous states in either of the isoform.

Fig 5a: SOPMA result showing secondary structure for isoform A of kertzkopf verkehrt protein. (Helix represented by 'h' in blue, random coil by 'c' in yellow, extended strand by 'e' in red and beta turn by 't' in green color.)

Fig 5b: Pie chart showing the percentage of alpha helix, extended strand, beta turn and random coil for isoform A of kertkzkopf verkehrt protein

10	20	30	40	50	60	70
MSAMRHI	 RPMAPPGQGPG	 AGTAGEHVDSI) DNNFTDE	 ESSPLTHDIYG	 GSQRTIQETKG	 WDVFRDPPIKIET
hhhetco		cccccceeccc	cccccct	tcccceeeeet	cccceeehctt	ceeeccccceeec
GSTANQ	ECLELTVKILK	IFAYVITFIIV	LIGGVIA	KGTMLFMTSQV	RKDKKMEYCNK	DLGRDKSFVVRLP
ccccch	hhhhhhhhh	hhhheeeeee	ettceed	ttceeeeehtc	cttchhhhhhc	cccccceeeeecc
EEERVA	VIWALLIAYAL	PEIGALIKSAR	UCFFRIE	KVPKIGHELEV	WLMESLSAVGM	ALLMEVVLPQIDA
TOCAMI	INCLOUNDELE	CLICDTOVECU	DEVENUT	DIANUADOUTC	TUTWOT TENDO	nneeeeecccnnn
hhhhhhh	hbbeecttoe	GLISKISKEGR	CREVEVIII	bbbbbbbbbbbbb		LLWVIPVACVMI3
CGWWEN	VSPOSPLGLV	RALGRIKEEMK	TRYFCH	TFLSTWKTLLE	FTVTLLTYWAC	GEEPGNLFAMYGD
ttccht	ccccchhhh	hhhhhhhhhh	hethech	eehhhhhhhhh	hhheeeeect	tcottceeeeht
AFGPHK:	IIVYELPAGLG	GVLPDTLESAN	IDTVDVD	AAYNTVVYVLI	LQIFGAYLCYI	FGKFACKILIQGF
tcccte	eeeecctttt	tccchhhhhtt	cceeeeh	hhhhhhhhhh	hhhhhhhhhh	hhhhhhheettc
SYAFPV:	SLTVPLSVTFL	IAACGIRIDDE	CFFHDTI	PDYLFFTSPSN	IFRFNNFVTEQM	AWAWILWLLSQTW
eeecce	eeccceeeee	eecttcccccc	teeccco	cteeeeccccc	cchhhhhhhhh	hhhhhhhhhhce
IALHIW	FPKCERLATTE	KLFVQPMYSSI	LIDQSMA	LNRRRDDQADV	KTEDLSEIEKE	KGDEYYETISVHT
eeeeco	cccchhhhhh	heecthhhhh	hhhhhhh	hhcccccccc	chhhhhhhhhh	ttchheeeeeec
DRSSAPI	NKPSIKSSDNI	TRIYSCATMWH	IETKDEMI	EFLKSIMRMDE	DQCARRVAQKY	LRVLDPDYYEFET
cccccc	ceeccecceh	heeehhhhhhh	icchhhhh	ihhhhhhhhh <mark>c</mark> t	hhhhhhhhhhh	hhhccttceeetc
HIFFDD	AFEISDHSDDD	IQCNRFVKLLI	ATMDEAA	SEIHQTTIRLF	PPKKYPTPYGG	RLVWTLPGKTKFI
eeeecc	leee ccccccc	hhhhhhhhhh	hhhhhhh	hhhhheeee	ccccccctto	eeeeeccccceee
THLKDK	DRIRHRKRWSC	VMYMYYLLGHF	LMELPIS	VDRKDAIAENI	YLLTLDGDIDF	KPNAVTLLVDLMK
eecctt	connnnnnnn	nnnnnnnnn	eeeccce	eccccnnnnn	eeeeetccccc	cttnnnnnnnn
KNKNLG	AACGRIHPVGS	GPMVWYQLFEY	AIGHWLQ	KATEHMIGCVI	CSPGCFSLFRG	KALMDDNVMKKYT
TROPEN	CELECCECCC	cceeeennnn	innnnnn	nnnnnneeee	CCTTCeeeett	cnnccnnnnnnc
IRSDEAL	RHIVQIDQGEL	RWLCILLLQRG	JIRVEISA	ASDATIHCPEG	FINEFINGRERW	VPSIIANIMULLA
DAKRTTI	TNDNISLLYT	FYOMMIMGGTT	LGPGTIE	TMINGAEVAAE	TONWTSFHYN	TVPTLAFMETCET
httchee	eccchheeeh	hhheeetccc	ccttcee	eeehhhhhhhhh	cottocccet	cochheeeeeec
CKSNIO	FVAOVLSTAY	AT.TMMAVTVGT	ALOLGED	GIGSPSAIFLT	SMVGSFFTAAC	THPOFFWCTTCGL
cccchh	hhhhhhhhhh	hhhhhhhhhh	hheecct	toccccheeee	hhhhhheehht	cccthheeehtte
IYLLSI	SMYLLLILYS	IINLNVVSWGT	REVVAKK	TKKELEAEKKA	AEEAKKRVKOK	SMLSFLOSGIGDN
eeeecc	thheeeeeee	eeeeeeetco	hhhhhh	hhhhhhhhhh	hhhhhhhhhhh	hheeehccccct
GDEEGS	/EFSLAGLFRC	IFCTHGKTSDE	KQQLTSI	AESLDTIKHRM	IDTIESAVDPHG	HHASRHGRRRTTS
tccttce	eehhhhhhhe	eeecccccccc	hhhhhhh	hhhhhhhhhh	hhhhhccttt	
SGSKDH	HLLTSVAEKSG	DESDESDSDTS	AEPKQER	DFLTNPYWIED	PDVRKGEVDFL	SSTEIQFWKDLID
ccccchl	hhhhhhttt		cccccch	hheccceecc	ccccttceeeh	hhhhhhhhhhhh
QYLYPII)NDPVEQARIA	KDLKELRDSSV	FAFFMIN	ALFVLIVFLLC	LNKDNIHVKWP	FGVRTNITYDEST
hheccco	cccchhhhhh	hhhhhhtthh	leeeehhh	hhhheeeehh	ccttteeeecc	eeeeeeeecctt
QEVHISE	EYLQLEPIGL	VFVFFFALILI	IQFTAML	FHRFGTISHII	ASTELNFCKKK	SEDLTQDQLIDKH
chhhhhl	hhhhccttce	eeeeehhhhhh	hhhhhhh	hhttcchhhhh	hhhhhhcccc	ccccchhhhhhh
AVEIVKI	ILQRLQGIDGD	YDNDSGSGPDR	IARRKTI	QNLEKAROPRE	QIGTLDVAFKK	RFLKLTADAENNP.
hhhhhh	hhhttcccc	ccccccccch	hhhhhhh	hhhhhccccc	ceeeeehhhhh	hheeehcccccc
ATPILT	RRLTMRAETIR	ALEVRKNSVMA	ERRKSAM	IQTLGAKNEYGI	TTGAPINNNGA	LPNQRSGRVSNAG
ccceeh	ւռոհհհհհհհ	nnnhhhhhhh	innhhhhh	nnntttcceee	eecccccttcc	ccccccccctt
ISIKDVI	NVNGGGAEQI	YGSNGGGTINO	GYEHVID	EDGDGNSLRLT	TRNPHPHPHHQ	VSWGONTNGGGGN
CCEEEeee	eecttcceee	eecttcceeet	teeeeee	ttcccceeeee	ecceccecce	eeecccctttccc
GIGKL						
UCCCE					_	

Fig 6a: SOPMA result showing secondary structure for isoform C of kertzkopf verkehrt protein. (Helix represented by 'h' in blue, random coil by 'c' in yellow,

extended strand by 'e' in red and beta turn by 't' in green color.)

Fig 6b: Pie chart showing the percentage of alpha helix, extended strand, beta turn and random coil for isoform C of kertkzkopf verkehrt protein

10	20	30	40	50	60	70
	1	I	1	1	1	I I
MSAMRHF	PMAPPGQGI	GAGTAGEHVDS	DDNNFTDDE	SSPLTHDIY	GSORTIOETKO	SWDVFRDPPIKIET
hhhetco		ccccccceecc	cccccctt	cccceeeeet	cccceeehctt	ceeeccccceeec
GSTANQE	CLELTVKII	.KIFAYVITFII	VLTGGVIAK	GTMLFMT SQ\	RKDKKMEYCNR	KDLGRDKSFVVRLP
ccccchi	hhhhhhhh	hhhheeeeee	eettceect	tceeeehtc	cttchhhhhh	ccccccceeeeecc
EEERVAW	IWALLIAYA	ALPEIGALIRSA	RICFFKTFK	VPKTGHFLFV	WLMESLSAVG	ALLMEVVLPQIDA
ttchhhh	hhhhhhhh	ctthhhhhhhh	teeeeeee	ccttcceeee	hhhhhhhhhh	hheeeeccchhh
IQGAMLI	NCLCVVPGI	FGLLSRTSKEG	KRFVKVIID	LAAVAAQVTO	SLVIWPLLENRE	RELWVIPVACVMIS
hhhhhh	hhheectto	eeeeeccottt	cceeeeeh	hhhhhhhhh	neeeechhhtto	cheeeeehheeeee
CGWWENY	VSPQSPLGI	LVRALGRIKEEM	KYTRYFCHI	FLSIWKILLE	FTVTLLIYWA	GEEPGNLFAMYGD
ttcchto	ccccchhł	հիրերերեր	hhcthcche	ehhhhhhhh	hhheeeeect	stocttceeeeeht
AFGPHK1	IVYELPAGI	LGGVLPDTLESA	NIDTVDVDA	AYNTVVYVLI	LQIFGAYLCYI	IFGKFACKILIQGF
tccctee	eeeecctt	tteechhhhht	tcceeeehh	hhhhhhhhh	հերերերեր	hhhhhhheettc
SYAFPVS	LTVPLSVT	FLIAACGIRIDD	PCFFHDTIP	DYLFFTSPSN	IFRFNNFVTE <u>O</u> M	4AWAWILWLLSQTW
eeeccee	eeccceeee	eeecttccccc	cteeccccc	teeeeccccc	cchhhhhhhh	hhhhhhhhhhhce
IALHIWI	PKCERLATI	TEKLFVQPMYSS	LLIDQSMAL	NRRRDDQADV	KTEDLSEIEKE	EKGDEYYETISVHT
eeeeeco	cccchhhhł	hheecthhhh	hhhhhhhh	hecceccec	chhhhhhhhh	nttchheeeeeec
DRSSAPN	KPSIKSSD	VITRIYSCATMW	HETKDEMIE	FLKSIMRMDE	DOCARRVAOKY	/LRVLDPDYYEFET
cccccc	cccccccc	hheeehhhhhh	hcchhhhhh	hhhhhhhct	hhhhhhhhh	hhhcottceeetc
HIFFDDA	FEISDHSDI	DIQCNRFVKLL	IATMDEAAS	EIHQTTIRLF	RPPKKYPTPYGO	GRLVWTLPGKTKFI
eeeecc	eeecccccc	chhhhhhhhhh	hhhhhhhh	hhhheeee	ccccccctt	seeeeecccccceee
THLKDKI	RIRHRKRWS	SQVMYMYYLLGH	RLMELPISV	DRKDAIAENI	YLLTLDGDID	FKPNAVTLLVDLMK
eecctto	chhhhhhh	հհհհհհհհհհ	heeecccee	cccchhhhhł	eeeetccccc	ctthhhhhhhhhhh
KNKNLGA	ACGRIHPVO	SGPMVWYQLFE	YAIGHWLQK	ATEHMIGCVI	CSPGCFSLFR	SKALMDDNVMKKYT
tttcccc	cttecccc	cccceeehhhh	hhhhhhhh	hhhhheeee	eccttceeeett	chhechhhhhhhc
TRSDEAF	HYVQYDQGE	EDRWLCTLLLQR	GYRVEYSAA	SDAYTHCPEG	FNEFYNORRRW	VVPSTIANIMDLLA
cccthh	heeeectto	hhhhhhhhht	tceeeeehc	ccccccct	hhhhhccccc	sechhhhhhhhhhh
DAKRTIN	INDNISLLY	IFYQMMLMGGT	ILGPGTIFL	MLVGAFVAAI	RIDNWTSFHYN	NIVPILAFMFICFT
httchee	eccchheee	hhhheeetco	cccttceee	eehhhhhhhh	locttoccccet	coochheeeeeec

Fig. 7a: SOPMA result showing secondary structure for isoform D of kertzkopf verkehrt protein. (Helix represented by 'h' in blue, random coil by 'c' in yellow, extended strand by 'e' in red and beta turn by 't' in green color.)

Fig 7b: Pie chart showing the percentage of alpha helix, extended strand, beta turn and random coil for isoform D of kertkzkopf verkehrt protein

Ab initio modeling

Ab initio modeling of isoform A, C & D was carried out using Phyre2 server. For the isoform C which contains 1392 amino acids 402 residues(29%) were modelled at >90% accuracy whereas for isoform D which consists of 1393 residues 403(29%) residues were modeled at >90% accuracy.

Fig 8a: ab initio model for isoform A

Fig 8b: ab initio model for isoform C

Conclusion

The current study is performing ab initio modeling of the isoforms of krotzkopf verkehrt protein from *Drosophila melanogaster* using *in silico* methods. The physiochemical properties were investigated using various in silico tools. All the isoforms were classified as inner membrane proteins with no signal peptide and their functional partners were also found to be same. Alpha helices and random coil were computed to be dominating in secondary structure of both the isoforms followed by extended strand.

Acknowledgement

Authors thank Department of Science and Technology (DST), Government of India, for supporting the research by providing INSPIRE fellowship.

References

- 1. Merzendorfer H, Zimoch L. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases, Journal of Experimental Biology. 2003; 206:4393-4412.
- Xin Zhang, Jianzhen Zhang, Yoonscong Park, Kun Yan Zhu, Identification and characterization of two chtin synthase genes in African malaria mosquito, Anopheles gambiae, Insect Biochemistry and Molecular Biology. 2012; 42: 674-682
- 3. Merzendorfer H., The cellular basis of chitin synthesis in fungi and insects: Common principles and differences, European journal of Cell Biology. 2011; 90:759-769
- Bhagath KP, Nagendra PS, Kasi VK, Sampath KR, Dinakara RA. UDP-N-acetylglucosamine pyrophosphorylase as novel target for controlling *Aedes aegypti* - molecular modeling, docking and simulation studies. International Journal of Mosquito Research. 2014; 1 (4):17-24.
- Ostrowski S, Dierick HA, Bejsovec A. Genetic control of cuticle formation during embryonic development of Drosophila melanogaster. Genetics. 2002; 161:171-182
- Peterson TN., Brunak S., Von Heijne G., Nielsen H., SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods 2011; 8:785-786
- 7. Kelley LA, *et al.* The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols 2015; 10:845-858.

Fig 8c: ab initio model for isoform D