International Journal of Chemical Studies

P-ISSN: 2349–8528 E-ISSN: 2321–4902 IJCS 2018; 6(3): 2950-2956 © 2018 IJCS Received: 14-03-2018 Accepted: 16-04-2018

Jayesh J Patel

PG-Student, Department of Genetics and Plant Breeding, B.A. College of Agriculture, AAU, Anand, Gujarat, India

DA Patel

Associate Professor, Department of Genetics and Plant Breeding, B.A. College of Agriculture, AAU, Anand, Gujarat, India

Hitiksha K Parmar

Assistant Professor, College of Horticulture, AAU, Anand, Gujarat, India

Azadchandra S Damor

Assistant Professor, College of Agriculture, AAU, Jabugam, Chhota Udepur, Gujarat, India

Dixita K Patel

Phd- Student, Department of Genetics and Plant Breeding, B.A. College of Agriculture, AAU, Anand, Gujarat, India

Correspondence Jayesh J Patel

PG-Student, Department of Genetics and Plant Breeding, B.A. College of Agriculture, AAU, Anand, Gujarat, India

Diallel analysis for combining ability studies in castor (*Ricinus communis* L.)

Jayesh J Patel, DA Patel, Hitiksha K Parmar, Azadchandra S Damor and Dixita K Patel

Abstract

The present experiment was conducted with forty-five F_{1s} developed through diallel mating design excluding reciprocals along with ten parents and a check in RBD with three replications. Mean sum of squares for general combining ability found significant for all the characters except days to maturity, 100 seed weight and shelling out turn. Whereas, for specific combining ability, it was significant for all the characters except 100 seed weight, shelling out turn and oil content, indicating the importance of both additive and non- additive gene actions in the inheritance of these traits. The magnitude of combining ability variance revealed prime role of additive genetic variance for inheritance of plant height up to primary raceme, number of nodes up to primary raceme and oil content. Whereas, non-additive gene action was preponderant for days to 50% flowering, days to maturity, total length of primary raceme, effective length of primary raceme, number of capsules on primary raceme, number of effective racemes per plant, total seed weight of primary raceme and seed yield per plant. Among the parents, SKI-324 was found good general combiner for seed yield per plant and some of its component traits and hence this parents would be of immense value for development of high yielding inbred line. Parents, SH-1 and JI-358 were found good general combiners for earliness. The estimates of sca effect revealed that cross SKI-324 x VH-63-1-3, JI-358 x SKI-324 and SH-42 x PCS-124 were found promising cross combinations for development of high yielding variety.

Keywords: General combining ability, Specific combining ability, castor seed yield

Introduction

Castor (*Ricinus communis* L., 2n = 2x = 20) is an industrially important non-edible oilseed crop widely cultivated in the arid and semi-arid regions of the world. Castor belongs to monospecific genus *Ricinus* of *Euphorbiaceae* family. Its monoecious nature favours cross-pollination and it is up to the extent of 50 percent. The choice of suitable parents for evolving better hybrids is aalways matter of concern to the plant breeders. For these purpose, the combining ability is a powerful tool to discriminate good as well as poor combiners for choosing appropriate parental materials for a particular character in the plant breeding programme (Lyngdoh *et al.*, 2011)^[5]. At the same time, it also provides information about the nature of gene action involved in the inheritance of seed yield and its component characters. In a systematic breeding programme, selection of parents with desirable characteristics having good general combining ability effects are essential (Baloch *et al.*, 2001)^[1]. Hence, the present investigation was undertaken to study the gene action in different quantitative traits and to study the combining ability for seed yield and its components in castor.

Materials and Method Experiment material

The experimental material consisting ten inbred line of castor were crossed in diallel fashion excluding reciprocals to generate fourty five hybrids. A complete set of 56 entries comprising ten parents, forty-five hybrids and one standard check hybrid (GCH-7) were sown in a randomized complete block design with three replications during *rabi* 2015-16 at Agronomy Farm, B. A. College of Agriculture, Anand Agricultural University, Anand. Each entry was grown in a single row of 6 m length keeping inter row 120 cm and intra row 60 cm distance and all recommended agronomic practices and plant protection measures were adopted for raising healthy crop. Observations on castor yield and its component traits were recorded on

five randomly selected plants for each entries in each replication and the average value per plot was computed except days to 50 percent flowering and days to maturity. The observations for days to 50 percent flowering and days to maturity were recorded on plot basis. Combining ability analysis was carried out on the data obtained for parents and F1s following Griffing (1956)^[3] method- II and model-I.

Results and Discussion

Variance for Combining Ability

The analysis of variance for combining ability (Table 1) revealed that general combining ability variances were significant for most of the characters except days to maturity, 100 seed weight and shelling out turn, whereas, specific combining ability variances were significant for majority of the characters except 100 seed weight, shelling out turn and oil content, which indicated the importance of both additive and of non-additive gene actions in the expression of majority of the characters.

The ratio of gca to sca variance indicated the preponderance of non-additive gene action in the expression of days to 50% flowering, days to maturity, total length of primary raceme, effective length of primary raceme, number of capsules on primary raceme, number of effective raceme per plant, total seed weight of primary raceme and seed yield per plant. The characters viz., plant height up to primary raceme, number of nodes up to primary raceme and oil content were mainly governed by additive gene action. These results are in accordance with the reports of Thakkar et al. (2005) [9], Maheshwari (2007) ^[6], Barad et al. (2009) ^[2], Padhar et al. (2010)^[7], Patel et al. (2010)^[8] and Kasture et al. (2014)^[4]. In a view of involvement of both additive and non-additive gene actions for the control of most of the characters, bi-parental mating or reciprocal recurrent selection could be employed for further improvement of the traits in the population.

General and Specific Combining Ability Effects

Estimates of gca effects (Table 2) in the present study showed that it was difficult to pick one good general combiner for all the traits together, as the combining ability effects of parents were not consistent for all the traits.

An overall appraisal of gca effects revealed that only one parent SKI-324 was good general combiner for seed yield per plant. The parental genotype SKI-324 was also good general combiner for total length of primary raceme, effective length of primary raceme, number of capsules on primary raceme, total seed weight of primary raceme and oil content. Parent ANDCI-8 was good combiner for plant height up to primary raceme and number of nodes up to primary raceme. Whereas, parent JI-358 was good general combiner for days to 50% flowering, number of nodes up to primary raceme, total length of primary raceme and effective length of primary raceme. Hence, the parental lines ANDCI-8 and JI-358 could be utilized in hybridization programme for development of early and short stature inbred lines, along with higher seed yield.

The perusal of data on sca effects (Table 3) revealed that none of the hybrid was consistently superior for all the traits. Out of 45 hybrids studied, three hybrids exhibited significant positive sca effects for seed yield per plant. The cross SKI-324 x VH-63-1-3 expressed the highest significant sca effect for seed yield per plant, which also recorded significant desirable sca effect for effective length of primary raceme. Another cross JI-358 x SKI-324 showed significant positive sca effect for seed yield per plant, which also had significant desirable sca effect for days to maturity, plant height up to primary raceme,

number of nodes up to primary raceme and number of effective racemes per plant. The cross SH-42 x PCS-124 also recorded significant sca effects in desirable direction for seed yield per plant. These hybrids could be exploited through heterosis breeding and may also give transgressive segregants in subsequent generations. Therefore, it would be worthwhile to use them for improvement of in seed yield per se, in castor. The results on per se, gca and scaeffects (Table 4) revealed that crosses having higher estimates of sca resulted from good x good, good x average, good x poor, average x good, poor x good and poor x poor general combiners. High sca effects due to good x good combiners reflect additive x additive type of gene interaction and superiority of favourable genes contributed by the parents. The crosses showing high sca effects involving one good general combiner (good x poor, poor x good, good x average and average x good) indicated additive x dominance type of gene interaction, which could produce desirable type of transgressive segregants in subsequent generations.

Source of variation	d.f.	Days to 50% flowering	Days to maturity	Plant height up to primary raceme	Number of nodes up to primary raceme	Total length of primary raceme	Effective length of primary raceme	Number of capsules on primary raceme	Number of effective raceme per plant	Total seed weight of primary raceme	100 seed weight	Shelling out turn	Seed yield per plant	Oil content
General combining ability	9	19.24**	31.75	602.38**	7.01**	231.57**	243.24**	432.73**	3.63**	523.43**	3.86	32.06	1494.99**	1.91*
Specific combining ability	45	17.73**	45.49**	73.27**	0.68*	27.20**	28.46**	58.22**	0.98**	82.65**	2.54	18.83	1002.41**	0.87
Error	108	5.84	18.41	37.42	0.43	8.11	6.66	24.37	0.30	34.37	3.24	20.66	485.37	0.78
σ^2_{gca}		0.126		44.092	0.528	17.031	17.899	31.209	0.220	36.731	0.11	1.103	41.048	0.087
^σ ² sca		11.882	27.087	35.852	0.245	19.096	21.801	33.855	0.682	48.282			517.035	0.075
$\sigma^2_{\rm gca}/\sigma^2_{\rm sc}$	ca	0.011		1.230	2.151	0.892	0.821	0.922	0.323	0.761			0.079	1.152

Table 1: Mean square due to general and specific combining ability for yield and its component characters in castor

*, ** significant at 5% and 1% levels, respectively. (--) Variances and ratios are negative so it is not mention.

Table 2: General combining ability	(gca) effects for different c	characters in castor
------------------------------------	-------------------------------	----------------------

Sr. No.	Parents	Days to 50% flowering	Days to maturity	Plant height up to primary raceme	Number of nodes up to primary raceme	Total length of primary raceme	Effective length of primary raceme	Number of capsules on primary raceme	Number of effective racemeper plant	Total seed weight of primary raceme	100 seed weight	Shelling out turn	Seed yield per plant	Oil content
1.	ANDCI-10-6	-0.59	2.07	1.96	-0.11	-3.83**	-0.89	2.48	-0.29	0.36	-0.92	-0.20	4.99	-0.13
2.	ANDCI-10-7	1.02	-0.63	3.24	0.08	0.73	-0.36	1.82	-0.09	6.02**	0.54	0.47	3.47	-0.14
3.	ANDCI-8	-0.95	0.40	-14.86**	-1.07**	-0.18	-0.93	-1.69	0.28	-1.73	0.31	2.35	3.17	-0.07
4.	JI-358	-2.06**	1.68	-1.28	-0.62**	2.81**	3.85**	1.48	0.10	-2.67	0.39	-2.45	2.33	-0.30
5.	SH-42	1.02	-0.27	2.06	0.02	4.43**	3.61**	4.50**	-0.56**	3.02	-0.07	-0.48	-3.86	0.35
6.	SH-1	-0.48	-2.66*	2.34	0.60**	2.87**	2.64**	6.86**	0.01	3.98*	-0.45	0.77	-0.10	-0.69**
7.	SKI-324	1.05	-0.52	6.55**	0.68**	5.46**	5.22**	5.91**	-0.16	11.08**	0.66	0.76	12.59*	0.79**
8.	VH-63-1-3	0.33	-1.32	7.69**	0.64**	-4.61**	-6.72**	-8.82**	0.58**	-6.65**	-0.76	0.98	10.93	0.19
9.	PCS-124	-1.28	-1.16	-9.91**	-1.22**	-8.43**	-8.35**	-11.34**	1.02**	-12.37**	-0.21	0.84	-6.41	0.14
10.	JH-109	1.94**	2.40	2.21	0.99**	0.75	1.93**	-1.18	-0.90**	-1.03	0.50	-3.04*	-27.11**	-0.14
	S.E. (gi)	0.687	1.220	1.739	0.187	0.809	0.734	1.403	0.156	1.667	0.512	1.292	6.263	0.254

*, ** significant at 5% and 1% levels, respectively.

Table 3: St	necific	combining	ability	(sca) effects	of h	vbrids f	for	different	characters	in	castor
Table 5. D	peente	comonning	aunity	(sca) chiects	OI II	y orrus i	IOI	uniterent	characters	111	castor

Sr. No.	Hybrids	Days to 50% flowering	Days to maturity	Plant height up to primary raceme	Number of nodes up to primary raceme	Total Length of primary raceme	Effective Length of primary raceme	Number of capsules on primary raceme
1.	ANDCI-10-6 x ANDCI-10-7	-3.77	2.03	-11.25*	0.20	-9.50**	-6.28**	-3.92
2.	ANDCI-10-6 x ANDCI-8	2.87	7.67	6.78	0.55	2.21	5.99*	0.66
3.	ANDCI-10-6 x JI-358	-0.69	2.72	0.94	-1.16	-7.44**	-2.47	-8.91
4.	ANDCI-10-6 x SH-42	-4.77*	-2.00	-8.33	-0.93	-10.13**	-7.22**	-11.46*
5.	ANDCI-10-6 x SH-1	-2.27	1.39	-3.88	-0.85	1.43	2.42	16.25**
6.	ANDCI-10-6 x SKI-324	-4.47*	-7.42	2.77	0.27	9.44**	8.79**	13.07**
7.	ANDCI-10-6 x VH-63-1-3	-1.41	-3.61	-8.70	-1.09	-0.76	-2.48	4.53
8.	ANDCI-10-6 x PCS-124	-0.47	-7.78*	10.51	0.70	7.27**	8.68**	16.32**
9.	ANDCI-10-6 x JH-109	-3.36	-7.00	0.24	-0.51	8.02**	4.14	6.35
10.	ANDCI-10-7 x ANDCI-8	0.92	-2.97	-5.03	-0.51	-3.89	-10.74**	-0.75
11.	ANDCI-10-7 x JI-358	-0.97	-3.58	7.93	-0.88	1.19	0.95	-4.38
12.	ANDCI-10-7 x SH-42	-2.05	-3.97	-11.54*	-1.00	0.57	0.72	-8.14
13.	ANDCI-10-7 x SH-1	-0.55	-1.25	15.37**	0.23	4.33	2.56	-0.70
14.	ANDCI-10-7 x SKI-324	3.59	-2.39	-0.84	0.01	-1.86	0.05	7.79
15.	ANDCI-10-7 x VH-63-1-3	-0.36	4.75	14.76**	0.98	3.94	2.59	1.32
16.	ANDCI-10-7 x PCS-124	-0.74	-2.75	-3.17	-0.16	-2.43	-2.79	4.44
17.	ANDCI-10-7 x JH-109	-1.97	2.03	5.63	-0.23	1.52	1.21	1.28
18.	ANDCI-8 x JI-358	2.67	2.06	9.63	0.60	5.97*	8.02**	5.06
19.	ANDCI-8 x SH-42	-3.74	-10.33**	-3.98	-1.05	1.55	1.09	0.30
20.	ANDCI-8 x SH-1	-7.24**	-5.28	-5.86	-1.16	-4.96	-6.64**	-7.05
21.	ANDCI-8 x SKI-324	-0.44	3.58	-14.81**	-0.44	-3.08	-4.78*	0.97
22.	ANDCI-8 x VH-63-1-3	-0.72	-0.61	-0.14	0.40	5.38*	3.01	7.89
23.	ANDCI-8 x PCS-124	-2.44	-1.78	-3.54	-0.67	-4.26	-6.61**	-5.58
24.	ANDCI-8 x JH-109	-6.33**	-11.67**	8.27	0.05	5.96*	6.45**	-0.88
25.	JI-358 x SH-42	-5.63*	-11.94**	-10.29	0.11	4.56	0.49	3.74
26.	JI-358 x SH-1	-1.47	3.44	-7.84	-0.67	-2.48	-2.51	8.32
27.	JI-358 x SKI-324	-4.33	-11.69**	-18.65**	-1.48*	1.20	-0.09	-4.60
28.	JI-358 x VH-63-1-3	-3.61	-7.89*	-6.72	0.02	-5.21*	-6.49**	-3.61
29.	JI-358 x PCS-124	-3.99	-3.72	6.28	-0.12	2.42	2.23	-3.75
30.	JI-358 x JH-109	-3.55	-6.28	-5.24	-1.00	1.71	-0.94	3.29
31.	SH-42 x SH-1	2.45	2.06	0.36	0.95	-0.90	1.52	10.76*
32.	SH-42 x SKI-324	-1.08	4.92	9.08	0.34	1.12	4.67	2.31
33.	SH-42 x VH-63-1-3	2.98	4.72	5.27	0.51	-2.36	-5.05*	3.04
34.	SH-42 x PCS-124	-2.08	-1.78	-0.26	-0.70	-0.26	-4.49	-6.57
35.	SH-42 x JH-109	2.03	-3.00	-1.85	0.56	-5.11	-5.57*	6.20
36.	SH-1 x SKI-324	1.09	-0.36	-6.27	0.49	0.21	-4.22	-0.11
37.	SH-1 x VH-63-1-3	0.48	-2.22	-5.14	-0.13	-3.07	-3.14	-7.65
38.	SH-1 x PCS-124	-2.24	-0.06	-5.47	-0.81	2.16	-0.38	1.40
39.	SH-1 x JH-109	-2.13	-2.61	3.27	0.25	5.04	5.26*	-4.29
40.	SKI-324 x VH-63-1-3	0.95	-2.03	14.18*	0.38	4.28	6.61**	-5.03
41.	SKI-324 x PCS-124	-0.44	-2.19	-4.35	0.64	-5.22*	-5.16*	-9.58*
42.	SKI-324 x JH-109	-1.33	-1.42	3.32	0.03	2.53	-1.34	3.26
43.	VH-63-1-3 x PCS-124	-0.05	0.61	-6.89	0.48	5.24*	5.71*	0.48
44.	VH-63-1-3 x JH-109	-0.27	0.72	-0.55	0.14	3.59	4.65	5.92
45.	PCS-124 x JH-109	1.34	6.56	3.59	0.47	3.88	5.36*	8.98*
	S.E. (sij)	2.212	3.924	5.594	0.601	2.604	2.360	4.514
	· •					1	1	

*,** significant at 5% and 1% level, respectively.

Sr. No.	Hybrids	Number of effective racemes per plant	Total Seed weight of primary raceme	100 seed weight	Shelling out turn %	Seed yield per plant	Oil content
1.	ANDCI-10-6 x ANDCI-10-7	-0.52	-0.64	-0.31	3.22	-18.40	1.35
2.	ANDCI-10-6 x ANDCI-8	0.98	11.31*	-3.87*	0.98	20.40	0.56
3.	ANDCI-10-6 x JI-358	1.22*	-4.28	0.90	1.41	-42.19*	0.44
4.	ANDCI-10-6 x SH-42	1.22*	-0.78	1.41	-0.50	26.77	0.16
5.	ANDCI-10-6 x SH-1	0.18	-4.95	-0.71	2.33	35.67	0.71
6.	ANDCI-10-6 x SKI-324	-0.18	14.88**	-1.31	0.83	-10.36	0.37
7.	ANDCI-10-6 x VH-63-1-3	-0.85	3.16	1.65	1.27	23.98	0.50
8.	ANDCI-10-6 x PCS-124	-1.03*	6.04	0.44	-3.35	-7.48	0.60
9.	ANDCI-10-6 x JH-109	-0.64	-10.69*	1.02	5.55	32.01	-0.04
10.	ANDCI-10-7 x ANDCI-8	1.51**	-19.34**	-2.10	4.51	30.59	-0.71
11.	ANDCI-10-7 x JI-358	-1.71**	5.33	1.35	-2.51	-11.23	0.47
12.	ANDCI-10-7 x SH-42	-0.38	-4.56	1.16	-3.83	-1.57	-0.54
13.	ANDCI-10-7 x SH-1	-0.62	21.12**	2.36	2.76	17.79	0.65
14.	ANDCI-10-7 x SKI-324	0.56	7.18	1.61	-2.81	29.17	-0.50
15.	ANDCI-10-7 x VH-63-1-3	-0.39	-3.23	0.19	-2.43	15.50	0.41
16.	ANDCI-10-7 x PCS-124	0.90	-13.37*	-0.55	-0.02	8.14	-1.12
17.	ANDCI-10-7 x JH-109	1.30*	5.69	1.60	-0.94	-13.80	0.11
18.	ANDCI-8 x JI-358	-0.54	7.48	3.49*	2.63	29.19	0.71
19.	ANDCI-8 x SH-42	1.45**	6.12	-1.21	5.48	-12.75	-1.07
20.	ANDCI-8 x SH-1	-0.65	-0.73	-0.13	5.96	25.68	0.67
21.	ANDCI-8 x SKI-324	0.26	-9.41	1.50	-6.40	-16.54	-1.24
22.	ANDCI-8 x VH-63-1-3	-0.22	10.99*	-0.72	-1.91	22.00	0.81
23.	ANDCI-8 x PCS-124	-0.40	-8.16	3.00	-4.74	-32.70	-0.14
24.	ANDCI-8 x JH-109	-1.34**	9.44	0.08	6.44	39.16	-0.34
25.	JI-358 x SH-42	0.36	10.19	-1.75	3.82	35.50	-0.26
26.	JI-358 x SH-1	0.12	-0.93	0.96	-0.79	0.33	0.97
27.	JI-358 x SKI-324	1.10*	-1.53	-1.75	6.91	42.31*	1.04
28.	Л-358 x VH-63-1-3	1.16*	-4.27	0.63	6.78	25.31	0.36
29.	JI-358 x PCS-124	0.11	0.98	-1.16	1.68	9.51	1.20
30.	JI-358 x JH-109	1.17*	4.44	-0.72	-12.26**	-29.86	-0.46
31.	SH-42 x SH-1	0.05	-2.73	0.67	-0.35	17.19	0.18
32.	SH-42 x SKI-324	0.43	-0.70	-0.02	1.66	-13.23	1.61
33.	SH-42 x VH-63-1-3	-0.45	-0.30	-1.11	3.42	-3.17	-0.50
34.	SH-42 x PCS-124	0.17	-3.45	-0.68	-2.40	42.17*	-0.41
35.	SH-42 x JH-109	-1.30*	-5.72	-0.42	-6.04	-8.40	0.45
36.	SH-1 x SKI-324	1.19*	5.08	-0.60	2.62	8.73	0.52
37.	SH-1 x VH-63-1-3	-0.62	-6.33	-0.50	-3.11	-23.60	0.74
38.	SH-1 x PCS-124	1.47**	5.66	-3.18	-0.43	37.74	0.09
39.	SH-1 x JH-109	1.40**	11.06*	0.10	2.50	9.63	0.29
40.	SKI-324 x VH-63-1-3	-1.38**	5.71	1.19	1.68	48.38*	-0.12
41.	SKI-324 x PCS-124	-1.02*	-13.77*	-0.34	4.87	9.05	-1.13
42.	SKI-324 x JH-109	0.84	11.02*	0.73	-2.67	9.08	-0.75
43.	VH-63-1-3 x PCS-124	1.23*	5.69	-2.13	0.81	4.72	-0.58
44.	VH-63-1-3 x JH-109	0.03	2.75	-0.58	-0.73	-3.92	-0.74
45.	PCS-124 x JH-109	-0.62	-2.26	1.24	3.49	11.42	0.42
	S.E. (sij)	0.502	5.362	1.647	4.157	20.148	0.817

*,** significant at 5% and 1% level, respectively.

Sr. No.	Characters	Best performing parents	Best general combiners	Best performing hybrids	<i>Per se</i> performance	sca effects
	Davia to $500/$	VH-63-1-3	JI-358	ANDCI-8 x SH-1	39.00	-7.24**
1.	Days to 50%	PCS-124	PCS-124	JI-358 x PCS-124	40.33	-3.99
	nowening	SH-1	ANDCI-8	JI-358 x SH-42	41.00	-5.63*
		SH-1	SH-1	JI-358 x SH-42	102.67	-11.94**
2	Days to maturity	VH-63-1-3	VH-63-1-3	JI-358 x SKI-324	102.67	-11.69**
		ANDCI-10-7	PCS-124	ANDCI-8 x SH-42	103.00	-10.33**
	Plant height up to	ANDCI-8	ANDCI-8	ANDCI-8 x PCS-124	52.00	-3.54
3	primary raceme	PCS-124	PCS-124	ANDCI-8 x SKI-324	57.20	-14.81**
	(cm)	JH-109	JI-358	ANDCI-8 x SH-1	61.93	-5.86
		PCS-124	PCS-124	ANDCI-8 x PCS-124	13.20	-0.67
4	Number of nodes up	ANDCI-8	ANDCI-8	ANDCI-8 x SH-42	14.07	-1.05
	to primary raceme	VH-63-1-3	JI-358	ANDCI-10-6 x JI-358	14.27	-1.16
	Total length of	SH-42	SKI-324	JI-358 x SH-42	74.27	4.56
5	primary raceme	SKI-324	SH-42	ANDCI-10-6 x SKI-324	73.53	9.44**
	(cm)	SH-1	SH-1	SH-42 x SKI-324	73.47	1.12
	Effective length of	SH-42	SKI-324	SH-42 x SKI-324	66.60	4.67
6	primary raceme	SKI-324	JI-358	ANDCI-10-6 x SKI-324	66.22	8.79**
	(cm)	JI-358	SH-42	ANDCI-8 x JI-358	64.03	8.02**
	Noushan of some los	SH-42	SH-1	ANDCI-10-6 x SH-1	93.20	16.25**
7	Number of capsules	SKI-324	SKI-324	SH-42 x SH-1	89.73	10.76**
	on primary racenie	JI-358	SH-42	ANDCI-10-6 x SKI-324	89.07	13.07**
	Number of offective	VH-63-1-3	PCS-124	VH-63-1-3 x PCS-124	9.27	1.23*
8	Number of effective	PCS-124	VH-63-1-3	SH-1 x PCS-124	8.93	1.47**
	racemes per plant	ANDCI-8	ANDCI-8	JI-358 x VH-63-1-3	8.27	1.16*
	Total good weight of	ANDCI-10-7	SKI-324	ANDCI-10-7 x SH-1	86.58	21.12**
9	primary racema (g)	SKI-324	ANDCI-10-7	ANDCI-10-6 x SKI-324	81.78	14.88**
	primary facelite (g)	SH-42	SH-1	ANDCI-10-7 x SKI-324	79.73	7.18
		PCS-124	SKI-324	ANDCI-8 x JI-358	33.31	3.49*
10	100 seed weight (g)	SH-42	ANDCI-10-7	ANDCI-8 x PCS-124	32.22	3.00
		SKI-324	JI-358	ANDCI-10-7 x SKI-324	31.94	1.61
	Shalling out turn	ANDCI-10-7	ANDCI-8	ANDCI-8 x SH-1	72.45	5.96
11	(%)	PCS-124	VH-63-1-3	ANDCI-8 x SH-42	70.71	5.48
	(70)	VH-63-1-3	PCS-124	ANDCI-10-7 x ANDCI-8	70.69	4.51
	Sood wield per plant	ANDCI-10-6	SKI-324	SKI-324 x VH-63-1-3	273.93	48.38*
12	(g)	ANDCI-10-7	VH-63-1-3	JI-358 x SKI-324	259.27	42.31*
	(5/	JI-358	ANDCI-10-6	ANDCI-10-7 x SKI-324	247.27	29.17
		SKI-324	SKI-324	SH-42 x SKI-324	50.18	1.61
13	Oil content (%)	SH-42	SH-42	JI-358 x SKI-324	48.96	1.04
		PCS-124	VH-63-1-3	ANDCI-10-6 x ANDCI-10-7	48.51	1.35

Table 4: Summary of three best performing parents, best	st general combining	parents and best	performing hybrids	s along with th	ieir <i>per se</i>
pe	erformance and sca ef	ffects			

*, ** significant at 5% and 1% levels, respectively.

Conclusion

SKI-324 was the best among the ten parents as it showed desirable GCA effects for most of yield and its contributing traits. Therefore these parents could be used extensively in hybrid breeding program with a view to increase castor seed yield with quality. Furthermore, based on SCA effects 3 hybrids SKI-324 x VH-63-1-3, JI-358 x SKI-324 and ANDCI-10-7 x SKI-324 were proved to be the best to increase the castor yield with better yield attributing characters. For varietal improvement, these crosses could also be utilized for exploiting promising recombinants and it could be useful towards enhancing castor seed yield and other characters.

References

- Baloch MZ, Ansari BA, Memon N, Kumbhar MB, Soomoro A. Combining ability and heterotic performance of some agronomic traits in bread wheat (*Triticum aestivum*). Pakistan J. Biological Sciences. 2001; 4(2):138-140.
- 2. Barad YM, Pathak AR, Patel BN. Studies on combining ability for seed yield and yield components in castor,

Ricinus communis L. J. Oilseeds Res. 2009; 26(2):105-108.

- Griffing B. Concept of general and specific combining ability in relation to diallel crossing system. Australian J. Biol. Sci. 1956; 9:463-98.
- 4. Kasture AG, Patel DA, Patel RK, Salunkhe MD, Patel VP. Genetic Analysis for Seed Yield and Its Components in Castor (*Ricinus communis* L.). Trends in Bioscience, 2014; 7(5):368-372.
- 5. Lyngdoh YA, Mulge R, Shadap A. Heterosis and combining ability studies in near homozygous lines of okra (*Abelmoschus esculentus* (L.) Moench) for growth parameters. The Bioscan. 2011; 8(4):1275-1279.
- 6. Maheshwari BH. Genetic architecture of yield and its component characters in castor (*Ricinus communis* L.) by diallel analysis. M.Sc. (Agri.) Thesis submitted to Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, 2007.
- Padhar PR, Chovatia VP, Barad VG, Patel MB, Dobaria KL. Combining ability by line x tester analysis in castor, *Ricinus communis* L. J. Oilseeds Res. 2010; 27:44-46.

International Journal of Chemical Studies

- Patel KM, Patel CG, Patel RN, Bhatt AB. Heterosis breeding in castor, *Ricinus communis* L. J Oilseeds Res. 2010; 27:354-356.
- Thakkar DA, Jadon BS, Patel KM, Patel CJ. Combining ability over environments in castor (*Ricinus communis* L.). J. Oilseeds Res. 2005; 22(2):321-323.