# International Journal of Chemical Studies

P-ISSN: 2349–8528 E-ISSN: 2321–4902 IJCS 2018; 6(4): 3047-3050 © 2018 IJCS Received: 17-05-2018 Accepted: 22-06-2018

#### Kandoliya Rushang U

Department of Soil Science and Agril. Chemistry, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, India

#### Kunjadia Babulal B

Professor, College of Agriculture, Junagadh Agricultural University, Motabhandariya, Amreli, Gujarat, India

#### **BA Golkiya**

Professor and Head, Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India

Correspondence Kandoliya Rushang U Department of Soil Science and Agril. Chemistry, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, India

# Efficacy of different combination of chemical fertilizer doses on yield of groundnut in Saurastra region

# Kandoliya Rushang U, Kunjadia Babulal B and BA Golkiya

#### Abstract

Groundnut (*Arachis hypogaea* L.) is an exhaustive crop and removes large amount of macro and micronutrient. No single source of element is capable to increase crop yield. Therefore, to study the relative effect of different macro and micro nutrient doses on yield and quality of kharif groundnut were studied in the present investigation. The results of the field experiment revealed that the application of higher rate of potassium without phosphorus and with optimum rate of nitrogen, iron, manganese, zinc and copper recorded maximum pod yield (2726, 2858, 2792 kg ha<sup>-1</sup>) in the year-1, 2 and pooled as compared to combine application of phosphoruas and potash with nitrogen and micronutrient. While, the application of higher rate of phosphoruas and potash with nitrogen and micronutrient recorded maximum haulm yield (3111, 4521, 3816 kg ha<sup>-1</sup>) in the year 1, 2 and pooled. The application of higher rate of potassium recorded higher shelling percentage and test weight. While highest oil percent was recorded with higher rate of potassium with medium to higher rate of phosphorus.

Keywords: Arachis hypogaea L, pod yield, fertilizer dose

#### Introduction

Groundnut (*Arachis hypogaea* L) designated as "wonder legume" in the sense that after flowering, fertilization and fruit set, the pegs (gynophores) elongate and penetrate in to the soil where the fruit enlarges and matures in soil. Among the various agronomic practices, nutrient management has an important role in maximizing the pod yield of groundnut. Judicial use of fertilizers is necessary for increasing agricultural production. Groundnut is an exhaustive crop and removes large amount of macro and micronutrient. No single source of nutrient is capable at supplying plant nutrients in adequate amount and balanced proportion. Therefore, to maintain soil fertility and to supply plant nutrients in balanced proportion for optimum growth, yield and quality of crop, various amounts of macro and micronutrient requires for higher yield. Therefore, keeping the above facts in background, relative effect of different macro and micro nutrient doses on yield and quality of kharif groundnut were studied in the present investigation.

#### **Materials and Methods**

The experiment was laid out in randomize block design with the twelve treatments and four replications for two successive years (2002, and 2003). Data were presented for pooled of two year as well as for individual year for the different parameter studied. The treatments consist of nine levels of PK (Phosphorus and Potash) fertilizes ( $P_{220}$  K<sub>140</sub>,  $P_{165}$  K<sub>140</sub>,  $P_{110}$  K<sub>140</sub>,  $P_{55}$  K<sub>140</sub>,  $P_{00}$  K<sub>140</sub>,  $P_{220}$  K<sub>105</sub>,  $P_{220}$  K<sub>70</sub>,  $P_{220}$  K<sub>35</sub>,  $P_{220}$  K<sub>00</sub>) with 20-50-50-25-10 Kg ha<sup>-1</sup> of N-Fe-Mn-Zn-Cu respectively, and highest PK rate with 20kg N ha<sup>-1</sup> were compared with state recommendation (N 12.5, P 25 kg.ha-1) as described below.

The groundnut was harvested at complete maturity stage. The plants of groundnut from ring area were collected first, then plants from net plot area were picked up and the pods were separated from the haulm manually by hand picking. After complete air-drying, the treatment wise pod and haulm yield was converted on hectare basis. Observations of yield attribute were taken for individual representative plant from the net plots of the respective treatments at the time of harvesting. Oil content (%) of kernels was determined by nuclear magnetic resonance (NMR) as per the method suggested by Tiwari *et al.* (1974)<sup>[1]</sup>.

International Journal of Chemical Studies

#### **Treatment detail**

| Treatment No.         | Details |                 |                  |                  |                  |                  |                  |                        |  |
|-----------------------|---------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------------|--|
| $T_1$                 | N 20    | P220            | K140             | $Cu_{10}$        | Fe <sub>50</sub> | Mn <sub>25</sub> | Zn25             | (Kg ha <sup>-1</sup> ) |  |
| $T_2$                 | N 20    | P165            | K140             | $Cu_{10}$        | Fe <sub>50</sub> | Mn <sub>25</sub> | Zn <sub>25</sub> | (Kg ha <sup>-1</sup> ) |  |
| T3                    | N 20    | $P_{110}$       | K140             | $Cu_{10}$        | Fe <sub>50</sub> | Mn <sub>25</sub> | Zn25             | (Kg ha <sup>-1</sup> ) |  |
| $T_4$                 | N 20    | P55             | K140             | $Cu_{10}$        | Fe <sub>50</sub> | Mn <sub>25</sub> | Zn25             | (Kg ha <sup>-1</sup> ) |  |
| T5                    | N 20    | P000            | K140             | $Cu_{10}$        | Fe <sub>50</sub> | Mn <sub>25</sub> | Zn25             | (Kg ha <sup>-1</sup> ) |  |
| T <sub>6</sub>        | N 20    | P220            | K105             | $Cu_{10}$        | Fe <sub>50</sub> | Mn <sub>25</sub> | Zn25             | (Kg ha <sup>-1</sup> ) |  |
| <b>T</b> <sub>7</sub> | N 20    | $P_{220} \\$    | K070             | $Cu_{10}$        | $Fe_{50}$        | Mn <sub>25</sub> | $Zn_{25}$        | (Kg ha <sup>-1</sup> ) |  |
| $T_8$                 | N 20    | $P_{220} \\$    | K <sub>035</sub> | $Cu_{10}$        | $Fe_{50}$        | Mn <sub>25</sub> | $Zn_{25}$        | (Kg ha <sup>-1</sup> ) |  |
| T9                    | N 20    | $P_{220} \\$    | $K_{000}$        | $Cu_{10}$        | $Fe_{50}$        | Mn <sub>25</sub> | $Zn_{25}$        | (Kg ha <sup>-1</sup> ) |  |
| T <sub>10</sub>       | N 20    | $P_{220} \\$    | $K_{140}$        | $Cu_{00}$        | $Fe_{00}$        | $Mn_{00}$        | Zn <sub>00</sub> | (Kg ha <sup>-1</sup> ) |  |
| T <sub>11</sub>       | N 12.5  | P <sub>25</sub> | K000             | $Cu_{10}$        | Fe <sub>50</sub> | Mn <sub>25</sub> | Zn <sub>25</sub> | (Kg ha <sup>-1</sup> ) |  |
| T <sub>12</sub>       | N 25    | P <sub>50</sub> | K000             | Cu <sub>00</sub> | Fe <sub>00</sub> | Mn <sub>00</sub> | Zn <sub>00</sub> | (Kg ha <sup>-1</sup> ) |  |

# **Results and Discussion**

The monsoons during the experimental seasons were normal during both the years. The data pertaining to the effect of different treatment on pod yield of groundnut are presented in Table 1. It is apparent from the data that pod yield was significantly affected by different treatments in experimental years as well as in pooled results. Treatment T 5 involving N 20  $P_{000}\ K_{140}\ Cu_{10}\ Fe_{50}\ Mn_{25}\ Zn_{25}\ Kg\ ha^{-1}$  produced significantly highest pod yield (2726, 2856 and 2792 kg ha-1) in both the years as well as in pooled and remained at par with  $T_1$ ,  $T_2$ ,  $T_3$ , T<sub>6</sub> and T<sub>10</sub> in first years. The increase in pod yield with treatment T<sub>5</sub> were 37.7 in year-1, 46.0 in year-2 and 41.8 per cent in pooled results over treatment T<sub>11</sub> (recommended dose of fertilizer), with addition of micro nutrients in that order (Fig. 1). The positive response of crop in terms of pod yield might be due to balanced fertilization i.e. application of macro nutrients along with micro nutrients enhances metabolic activities in plant and assimilate transportation from source to sink (Kanwar, 1973)<sup>[2]</sup>. These results are in complete agreement with those reported by Agasimani and Hosmani, (1989) <sup>[3]</sup>; Yadav (1990) <sup>[4]</sup>; Deshmukh et al. (1992) <sup>[5]</sup>; Venkatararamana and Kiraman (2002)<sup>[6]</sup>.

An appraisal of data for haulm yield (Kg ha<sup>-1</sup>) revealed that the haulm yield was significantly affected by different treatments in individual year and pooled result (Table 1). Significantly highest haulm yield (Kg ha<sup>-1</sup>) of 3056, 3003 and 3029 Kg ha<sup>-1</sup> was observed in both years and pooled results. It remained at par with treatment T<sub>1</sub> and T<sub>6</sub> was at par with T<sub>7</sub>. Similar response of groundnut to application of different nutrient have also been reported by Asodaria (1994)<sup>[7]</sup>; Ghetia (1995)<sup>[8]</sup> and Kachot (1999)<sup>[9]</sup>.

The mature pods per plant were significantly affected by different treatment in both the years. Significantly highest mature pods per plant with value of 10.8 and 12.05 were observed under treatment T<sub>5</sub> in the year-1, and year-2, respectively (Table. 2). It was statistically at par with the year only. The application of fertilizer with treatment T<sub>5</sub> increased mature pods by 60, and 22.3 per cent over  $T_{11}$  (recommended dose of fertilizer) in the year 1 and 2, respectively. While pooled results were not found significant however, maximum mature pods plant<sup>-1</sup> (11.43) was recorded for the treatment  $T_5$ which was 37.7 per cent higher over the recommended dose of fertilizer- T<sub>11</sub>. It ranged from 8.30 to 11.43 mature pods plant<sup>-1</sup>, were significantly affected by different treatments. The total pods plant<sup>-1</sup>, were significantly affected by different treatments in both the years as well as in pooled. Significantly highest total pods plant<sup>-1</sup> (11.95, 14.35 and 13.15) were recorded with treatment  $T_5$  and were statistically at par with  $T_2$  in first year only. The treatments  $T_5$  increased the total pods per plant up to 51.3, 22.1 and 33.8 per cent as compared to  $T_{11}$  (recommended dose of fertilizer) in the year-1, Year-2 and pooled, respectively. It ranged from 7.90 to 11.95 in year-1, 11.75 to 14.35 in 2 year-2 and 9.83 to 13.15 in pooled results under the different treatments.

Shelling percentage, test weight and oil percentage were non significantly affected by different treatments (Table 3) in individual years as well as in pooled except shelling percentage in pooled. The maximum shelling per cent (79.28, 70.45 and 74.86 per cent) were observed in respective years, but significantly highest shelling per cent (74.86) were observed with  $T_8$ . Whereas maximum test weight of 63.20 in year-1, 49.78 in year-2 and 55.63 gm/100 seed in pooled were observed with the treatment T<sub>8</sub>, T<sub>2</sub> and T<sub>3</sub>, respectively, it ranged from 57.90 to 63.20 in year-1, 43.80 to 49.78 in year-2 and 51.10 to 55.63gm/100 seed in pooled under the different treatments. The maximum oil per cent of 50.25 in year-1, 49.23 in year-2 and 49.48 in pooled were recorded with treatment  $T_2$ ,  $T_6$  and  $T_2$ , respectively, and it ranged from 48.56 to 50.25, 48.23 to 49.23 and 48.46 to 49.48 per cent in the year-1, year-2 and in pooled, respectively, under the different treatments. The results present in Table 3 indicated that shelling percentage, test weight and oil content were not affected significantly due to different treatment (Patel and Patel, 1987 <sup>[10]</sup>; Asodaria, 1994 <sup>[7]</sup>; Devi Dayal, et al., 2004 <sup>[11]</sup> and Devi Dayal, 1997 [12]).

### Conclusion

The results of the field experiment revealed that the application of higher rate of potassium without phosphorus and with optimum rate of nitrogen, iron, manganese, zinc and copper recorded maximum pod yield (2726, 2858, 2792 kg ha<sup>-1</sup>) in the year-1, 2 and pooled as compared to combine application of PK with nitrogen and micronutrient. While the application of higher rate of PK with nitrogen and micronutrient recorded maximum haulm yield (3111, 4521, 3816 kg ha<sup>-1</sup>) in the year 1, 2 and pooled. Similar trends was observed increase of yield attribute like no. of mature pods per plant, no. of immature pods per plant and total pods per plant. Maximum pod yield target was achieved at T<sub>5</sub>. The application of higher rate of phosphorus with lower rate of potassium recorded higher shelling percentage and test weight. While highest oil percent was recorded with higher rate of potassium with medium to higher rate of phosphorus.

Table 1: Effect of different dose of fertilizer on yield of groundnut

| Treatments            | Pod Y  | ield (Kg | g ha <sup>-1</sup> ) | Halm Yield (Kg ha <sup>-1</sup> ) |        |        |  |
|-----------------------|--------|----------|----------------------|-----------------------------------|--------|--------|--|
| Treatments            | Year-1 | Year-2   | Pooled               | Year-1                            | Year-2 | Pooled |  |
| $T_1$                 | 2596   | 2522     | 2559                 | 2951                              | 2905   | 2928   |  |
| $T_2$                 | 2639   | 2467     | 2553                 | 2709                              | 2753   | 2731   |  |
| <b>T</b> <sub>3</sub> | 2596   | 2521     | 2558                 | 2760                              | 2773   | 2767   |  |
| $T_4$                 | 2205   | 2113     | 2209                 | 2865                              | 2861   | 2863   |  |
| T5                    | 2726   | 2858     | 2792                 | 2865                              | 2807   | 2886   |  |
| T <sub>6</sub>        | 2474   | 2383     | 2428                 | 2899                              | 2622   | 2911   |  |
| <b>T</b> <sub>7</sub> | 2309   | 2236     | 2273                 | 3056                              | 3003   | 3029   |  |
| $T_8$                 | 2570   | 2505     | 2537                 | 2865                              | 2928   | 2896   |  |
| <b>T</b> 9            | 2049   | 2054     | 2051                 | 2622                              | 2762   | 2692   |  |
| T10                   | 2561   | 2523     | 2542                 | 2761                              | 2726   | 2742   |  |
| T <sub>11</sub>       | 1979   | 1957     | 1968                 | 2674                              | 2714   | 2694   |  |
| T <sub>12</sub>       | 2092   | 2118     | 2105                 | 2804                              | 2715   | 2760   |  |
| S.Em <u>+</u>         | 109    | 82       | 59                   | 83.8                              | 67     | 46     |  |
| C.D. at 5%            | 315    | 237      | 167                  | 241                               | 193    | 131    |  |
| C.V. %                | 11.9   | 10.0     | 11.0                 | 11.2                              | 10.8   | 10.7   |  |



Fig 1: Per cent increase over in pod yield over state recommended dose of fertilizer T11

| Treatments            | Immature Pod per Plant |        |        | Matu   | re Pod per | Plant  | Total Pod per Plant |        |        |
|-----------------------|------------------------|--------|--------|--------|------------|--------|---------------------|--------|--------|
|                       | Year-1                 | Year-2 | Pooled | Year-1 | Year-2     | Pooled | Year-1              | Year-2 | Pooled |
| $T_1$                 | 1.25                   | 1.95   | 1.60   | 9.10   | 10.25      | 9.68   | 10.35               | 12.20  | 11.28  |
| $T_2$                 | 1.10                   | 1.70   | 1.40   | 9.80   | 10.03      | 9.91   | 10.90               | 11.73  | 11.31  |
| <b>T</b> 3            | 1.00                   | 2.00   | 1.50   | 9.05   | 10.40      | 9.73   | 10.05               | 12.70  | 11.23  |
| $T_4$                 | 1.45                   | 2.00   | 1.73   | 7.20   | 10.45      | 8.83   | 8.65                | 12.45  | 10.55  |
| <b>T</b> 5            | 1.15                   | 2.30   | 1.73   | 10.80  | 12.05      | 11.43  | 11.95               | 14.35  | 13.15  |
| T <sub>6</sub>        | 1.10                   | 2.00   | 1.55   | 7.50   | 10.25      | 8.88   | 8.60                | 12.25  | 10.43  |
| <b>T</b> <sub>7</sub> | 1.25                   | 1.80   | 1.53   | 7.30   | 10.40      | 8.85   | 8.55                | 12.20  | 10.38  |
| $T_8$                 | 1.10                   | 1.93   | 1.51   | 8.75   | 10.70      | 9.73   | 9.85                | 12.63  | 11.24  |
| <b>T</b> 9            | 1.00                   | 1.90   | 1.45   | 6.95   | 10.45      | 8.70   | 7.95                | 12.10  | 10.03  |
| T10                   | 1.00                   | 1.80   | 1.40   | 8.05   | 10.30      | 9.18   | 9.05                | 12.10  | 10.58  |
| T <sub>11</sub>       | 1.15                   | 1.90   | 1.53   | 8.75   | 9.85       | 8.30   | 7.90                | 11.75  | 9.83   |
| T <sub>12</sub>       | 1.15                   | 1.90   | 1.53   | 7.10   | 10.10      | 8.60   | 8.25                | 12.00  | 10.13  |
| S.Em <u>+</u>         | 0.11                   | 0.23   | 0.11   | 0.47   | 0.39       | 0.52   | 0.47                | 0.45   | 0.50   |
| C.D. at 5%            | NS                     | NS     | NS     | 1.36   | 1.13       | NS     | 1.36                | 1.28   | 1.55   |
| C.V. %                | 17.2                   | 20.9   | 20.7   | 10.0   | 6.50       | 8.10   | 8.80                | 6.20   | 7.30   |

Table 3: Effect of different dose of fertilizer on quality of groundnut.

| Treatments            | Shelling Per cent (%) |        |        | Те     | est Weight ( | ( <b>g</b> ) | Oil per cent (%) |        |        |
|-----------------------|-----------------------|--------|--------|--------|--------------|--------------|------------------|--------|--------|
|                       | Year-1                | Year-2 | Pooled | Year-1 | Year-2       | Pooled       | Year-1           | Year-2 | Pooled |
| $T_1$                 | 72.13                 | 69.98  | 71.05  | 57.90  | 48.70        | 53.30        | 49.88            | 48.95  | 49.41  |
| $T_2$                 | 72.40                 | 66.78  | 69.59  | 60.93  | 49.78        | 55.35        | 50.25            | 48.70  | 49.48  |
| T3                    | 77.88                 | 68.55  | 73.21  | 61.58  | 49.68        | 55.63        | 48.69            | 48.23  | 48.46  |
| $T_4$                 | 74.10                 | 69.65  | 71.88  | 59.58  | 46.30        | 52.94        | 49.61            | 48.60  | 49.16  |
| T5                    | 74.38                 | 71.23  | 72.80  | 69.03  | 48.83        | 53.93        | 49.75            | 48.90  | 49.33  |
| T <sub>6</sub>        | 76.58                 | 70.03  | 73.30  | 60.53  | 46.23        | 53.38        | 49.33            | 49.23  | 49.28  |
| <b>T</b> <sub>7</sub> | 77.00                 | 70.23  | 73.61  | 60.50  | 48.55        | 54.53        | 49.31            | 48.93  | 49.12  |
| T8                    | 79.28                 | 70.45  | 74.86  | 63.20  | 44.78        | 53.99        | 48.66            | 48.70  | 48.63  |
| T9                    | 74.35                 | 69.90  | 72.13  | 60.48  | 46.58        | 53.53        | 48.75            | 48.95  | 48.85  |
| T10                   | 76.03                 | 70.08  | 73.05  | 58.28  | 43.93        | 51.10        | 49.50            | 48.53  | 49.01  |
| T11                   | 74.10                 | 69.88  | 71.99  | 61.10  | 43.80        | 52.45        | 48.56            | 48.55  | 48.56  |
| T <sub>12</sub>       | 72.93                 | 70.00  | 71.46  | 58.10  | 45.23        | 51.61        | 48.69            | 48.75  | 48.72  |
| S.Em+                 | 1.87                  | 1.04   | 0.92   | 2.00   | 2.39         | 1.35         | 0.50             | 0.33   | 0.26   |
| C.D. at 5%            | NS                    | NS     | 2.61   | NS     | NS           | NS           | NS               | NS     | NS     |
| C.V. %                | 4.30                  | 2.58   | 3.61   | 5.80   | 8.82         | 7.13         | 1.74             | 1.16   | 1.48   |

## References

- Tiwari PN, Gambhir PN, Rajan TS. Rapid and nondestructive determination of oil in oilseed by pulses. NMR technique. J American Oil & Chem. Sci. 1974; 51:104-109.
- 2. Kanwar JS. Soil testing service in India reported and prospect. *Proc. Int. Symp. Soil ferti.* New Delhi. 1973; 1:1103-1113.
- 3. Agasimani CA, Hosmani MM. Response of groundnut crop to farmyard manure, nitrogen and phosphorus in rice

fallows in coastal sandy soils. J Oilseeds Res. 1989; 6:360-363.

- Yadav GL. Fertilizer requirement of groundnut under dry land condition on cultivator's field. J Oilseeds Res. 1990; 7(2):133-135
- 5. Deshmukh VN, Warokar RT, Kankapure BT. Yield, quality and nutrient uptake by groundnut as influenced by potash fertilization and time of application. J Potassium Res. 1992; 8(4):367-370.

- 6. Venkataramana P, Kiraman NJ. Influence of different levels of organic and inorganic fertilizers on groundnut cultivars. Environment and Ecology. 2002; 20:89-91.
- 7. Asodariya KB. Peanut (*Arachis hypogaea* L.) performance under balanced use of fertilizer option and their residual effect succeeding kharif maize. Ph.D. Thesis (Unpublished), Gujarat Agricultural University, Sardarkrushinagar (Gujarat), 1994.
- Ghetia NR. Response of summer groundnut to fertilization and method irrigation under varying fertility levels. M.Sc. (Agri.) Thesis (Unpublished), Gujarat Agricultural University, Sardarkrushinagar (Gujarat), 1995.
- 9. Kachot NA. Integrated nutrient management in kharif groundnut. Ph.D Thesis (Unpublished), Gujarat Agricultural University, Sardarkrushingar (Gujarat), 1999.
- 10. Patel BD, Patel PG. Response of summer groundnut to rhizobium inoculation and graded levels of NPK. GAU Res. J. 1987; 12(1):36-38.
- 11. Devi Dayal, Singh V, Naik PR. Nutrient balance in the soil under major groundnut based cropping system. Paper presented at the National symp. On enhancing productivity of groundnut for sustaining food and nutritional security. (October 11-13, 2004 NRCG, Junagadh, 2004, 134-135.
- 12. Devi Dayal. Evaluation of method of irrigation along with fertigation under varying levels of fertility in summer groundnut (*Arachis hypogaea* L.) Ph.D. Thesis (Unpublished), Gujarat Agricultural University, Sardarkrushinagar (Gujarat), 1997.