International Journal of Chemical Studies

P-ISSN: 2349–8528 E-ISSN: 2321–4902 IJCS 2018; 6(4): 746-748 © 2018 IJCS Received: 18-05-2018 Accepted: 19-06-2018

VN Raiyani

Department of Agronomy, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, India

RK Kathiriya

Department of Agronomy, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, India

VM Thummer

Department of Agronomy, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, India

VV Rupareliya

Department of Agronomy, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, India

Correspondence VN Raiyani Department of Agronomy, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, India

Effect of FYM and biofertilizers on growth, yield attributes and yield of fenugreek (*Trigonella foenum-graecum* L.)

VN Raiyani, RK Kathiriya, VM Thummer and VV Rupareliya

Abstract

A field experiment entitled "Effect of FYM and biofertilizers on growth, yield attribute and yield of fenugreek (*Trigonella foenum-graecum* L.)" was carried out during *rabi* season of 2016-17 on calcareous clayey soil at Junagadh. The experimental results revealed that significantly higher values of growth parameters *viz.*, plant height, number of branches, number and dry weight of root nodules, dry matter production and crop growth rate and yield attributes *viz.*, number and length of pods per plant, number of seed per pod, seed yield (1712 kg/ha) and straw yield (2814 kg/ha) were recorded under the treatment T₁₀ FYM 4 t/ha + Rhizobium (seed inoculation) + PSB + KSB (soil application), being at par with treatments T₂ (20-40-00 kg N-P₂O₅-K₂O/ha), T₇ (FYM 4 t/ha + *Rhizobium* + PSB), T₈ (FYM 4 t/ha + *Rhizobium* + KSB) and T₉ (FYM 4 t/ha + PSB + KSB).

Keywords: FYM, rhizobium, PSB, KSB, fenugreek, yield

Introduction

Fenugreek (Trigonella foenum-graecum L.) commonly known as methi belongs to sub-family of papillionaceae of leguminoceae. Chemical analysis of Fenugreek seed revealed that it contains 13.7 percent water, 26.2 percent protein, 5.8 percent fat, 3.0 percent mineral matter, 7.2 percent fibers, 4.41 per cent carbohydrates, 0.16 per cent calcium, 0.37 per cent phosphrous, 14.1 mg iron, 333 calories and 160 IU carotene per 100 gm. (Agrawal et al., 2001)^[1] The maximum diosgenin 2.03 per cent was found in cotyledons germinated seeds of fenugreek (Bhavsar et al., 1980)^[3]. Fenugreek is one of the important spices of India which is one of the major producer and exporter of fenugreek, with an annual exporter of nearly 1500 tonnes. In India fenugreek occupied an area of about 2, 11,110 hectares producing 2,99,870 tonnes of seeds (Anon., 2017)^[2]. In India, it is widely grown states are Rajasthan, Gujarat, Tamil Nadu, Utter Pradesh, Himachal Pradesh, Madhya Pradesh and Andhra Pradesh. Gujarat contributes about 20 percent in total production of fenugreek in India. In Gujarat, fenugreek occupied an area of 6250 hectares producing 15129 tonnes of seeds. The major fenugreek growing districts in Gujarat are Banaskantha, Patan and Kheda (Anon., 2017)^[2]. Organic materials such as FYM have traditionally been used by farmers. FYM supplies all major nutrients (N, P, K, Ca, Mg, S,) necessary for plant growth, as well as micronutrients (Fe, Mn, Cu and Zn). Hence, it acts as a mixed fertilizer. FYM improves soil physical, chemical and biological properties. Biofertilizers keep the soil environment rich in all kinds of micro and macro-nutrients via nitrogen fixation, phosphate and potassium solubilization or mineralization, release of plant growth regulating substances, production of antibiotics and biodegradation of organic matter in the soil providing better nutrient uptake and increased tolerance towards drought and moisture stress.

Materials and Methods

The experiment was conducted in D-4 plot of Instructional Farm, Department of Agronomy, Junagadh Agricultural University, Junagadh during *Rabi* 2016-17 to study the "Effect of FYM and biofertilizers on growth, yield attribute and yield of fenugreek (*Trigonella foenum-graecum* L.)". The soil of the experimental plot was clayey in texture and slightly alkaline in reaction with with pH 8.0 and EC 0.56 dS/m. The soil was low in available nitrogen (285 kg/ha), high in available phosphorus (68 kg/ha) and medium in available potash (232 kg/ha). Ten treatments comprising of T₁ (Control), T₂ (20-40-00 kg N-P₂O₅-K₂O/ha), T₃ (FYM 4 t/ha),

T₄ (FYM 4 t/ha + *Rhizobium*), T₅ (FYM 4 t/ha + PSB), T₆ (FYM 4 t/ha + KSB), T₇ (FYM 4 t/ha + *Rhizobium* + PSB), T₈ (FYM 4 t/ha + *Rhizobium* + KSB), T₉ (FYM 4 t/ha + *PSB* + KSB) and T₁₀ (FYM 4 t/ha + *Rhizobium* + PSB + KSB) with three replications. The improved variety "Gujarat Fenugreek-2" was used for sowing with seed rate of 25 kg/ha on 18th November during 2016. The seeds were placed at 3-5 cm depth, keeping inter row spacing of 30 cm and covered with the soil. The crop was uniformly fertilized with 20 kg/ha nitrogen and 40 kg/ha P₂O₅ in the form of urea and diammonium phosphate, respectively as a basal application just before sowing. It is applied in only treatment plot.

Results and Discussion

1. Growth parameters

Growth parameters *viz.*, plant height at 30, 60 DAS and at harvest (Table 1); number of branches per plant at harvest, number and weight of root nodules/plant at 60 DAS, dry matter per plant at 30, 60 DAS and at harvest were significantly the highest value observed under the treatment T_{10} (FYM 4 t/ha + *Rhizobium* + PSB + KSB), which remained statistically at par with the treatment T_2 (20-40-00 kg N-P₂O₅-

K₂O/ha), T₇ (FYM 4 t/ha + *Rhizobium* + PSB), T₈ (FYM 4 t/ha + *Rhizobium* + KSB) and T₉ (FYM 4 t/ha + PSB + KSB). Among the different treatments, significantly the maximum CGR at 30-60 DAS recorded with treatment T₁₀ (FYM 4 t/ha + *Rhizobium* + PSB + KSB) which remain statistically at par with treatment T₂ (20-40-00 kg N-P₂O₅-K₂O/ha).

This may be due to fact that FYM increase the absorptive power of the soil for cation and anion and these ions are released slowly for the entire crop growth period. The FYM also produce hormones and growth promoting substances that help to promote the plant growth. Biofertilizer inoculation like, *Rhizobium* increase the number of such microorganisms in the soil rhizosphere and consequently improve the extent of microbiologically fixed nitrogen for plant growth. They are used either to fix nitrogen or to solubilise plant nutrients like phosphate. Phosphate solubilising microorganism solubilises the unavailable bound phosphate of the soil and makes them available to plants which increase overall plant growth. The increase in growth parameter due to the solubilization of nutrients in the soil by producing organic acids by KSB. Result found which are conformity with the findings of Summauria and Yadav (2009)^[9], Meena et al. (2015)^[7].

Table 1: Effect of different treatments on growth parameter of Fenugreek.

	Plant height (cm)			No. of	No of root podulos	Weight of root nodules	Dry matter per plant (g) at			CGR (g/day)
Treatments	At 30 DAS	At 60 DAS	At harvest	branches per plant	at 60 DAS	at 60 DAS (mg)	At 30 DAS	At 60 DAS	At harvest	at 30-60 DAS
T ₁	11.29	31.17	49.46	5.00	26	134.64	0.23	0.92	3.17	0.023
T ₂	14.75	37.68	61.80	6.93	31	167.55	0.60	2.70	4.74	0.070
T ₃	11.49	31.73	52.93	5.10	27	141.07	0.24	1.10	3.18	0.029
T_4	12.62	33.83	57.03	6.06	30	156.28	0.42	2.15	3.89	0.058
T ₅	12.55	33.04	55.85	5.70	29	152.77	0.35	1.88	3.78	0.051
T ₆	12.35	32.10	54.54	5.37	28	146.71	0.30	1.35	3.35	0.035
T ₇	14.69	36.80	60.90	6.60	31	165.42	0.56	2.40	4.64	0.061
T ₈	13.52	35.13	58.93	6.14	30	158.27	0.43	2.21	4.20	0.059
T ₉	14.29	35.74	60.01	6.18	30	160.67	0.50	2.25	4.35	0.058
T ₁₀	15.25	38.28	62.59	7.15	33	168.41	0.60	3.00	5.53	0.080
S.Em. <u>+</u>	0.73	1.63	2.70	0.33	1.42	7.26	0.02	0.10	0.45	0.001
CD at 5%	2.17	4.84	8.03	0.97	4.22	21.58	0.07	0.30	1.32	0.01
CV %	9.52	8.16	8.15	9.4	8.34	8.11	9.49	8.52	9.62	11.29

 Table 2: Effect of different treatments on growth parameter of Fenugreek.

Treatments	Pods per plant	Pod length (cm)	Seeds per pod	Seed yield (kg/ha)	Stover yield (kg/ha)	Biological yield (kg/ha)
T_1	19.73	9.34	12.08	1021	1901	2922
T_2	23.43	11.33	15.77	1632	2767	4399
T3	20.06	9.59	12.32	1254	2124	3378
T 4	21.70	10.31	13.38	1351	2480	3831
T5	21.23	10.11	12.84	1323	2267	3589
T ₆	20.93	9.69	12.49	1285	2198	3483
T7	23.01	11.19	14.75	1508	2660	4168
T8	22.10	10.61	13.63	1354	2302	3657
T9	22.47	10.87	14.35	1402	2540	3942
T10	25.49	11.49	16.29	1712	2814	4525
S.Em. +	1.09	0.49	0.80	82.33	119.59	141.86
CD at 5%	3.24	1.45	2.39	244.61	355.32	421.51
CV %	8.57	8.08	10.09	10.16	8.53	6.41

Treatment details: T₁ (Control), T₂ (20-40-00 kg N-P₂O₅-K₂O/ha), T₃ (FYM 4 t/ha), T₄ (FYM 4 t/ha + *Rhizobium*), T₅ (FYM 4 t/ha + PSB), T₆ (FYM 4 t/ha + KSB), T₇ (FYM 4 t/ha + *Rhizobium* + PSB), T₈ (FYM 4 t/ha + *Rhizobium* + KSB), T₉ (FYM 4 t/ha + PSB + KSB) and T₁₀ (FYM 4 t/ha + *Rhizobium* + PSB + KSB)

Note: 1. Rhizobium seed treatment @ 30 mL/kg seeds

2. PSB soil application @ 3 L/ha

3. KSB soil application @ 3 L/ha

4. The treatment T₂ was kept outside the organic plot

2. Yield Attributes and Yield

The yield attributes such as number of pod per plant, number of seeds per pod, pod length were significantly the highest value observed under the treatment T_{10} (FYM 4 t/ha + Rhizobium + PSB + KSB) and it was found statistically analogous to treatments T2 (20-40-00 kg N-P2O5-K2O/ha), T7 (FYM 4 t/ha + Rhizobium + PSB) and T₉ (FYM 4 t/ha + PSB + KSB). Seed, stover and biological yield were found significantly higher in treatment T₁₀ (FYM 4 t/ha + *Rhizobium* + PSB + KSB), T₂ (20-40-00 kg N-P₂O₅-K₂O/ha), T₇ (FYM 4 t/ha + Rhizobium + PSB) and T₉ (FYM 4 t/ha + PSB + KSB). These treatments might be due to application of FYM increased the photosynthetic activity in fenugreek and the translocation of photosynthesis in plant. Improvement of all the yield attributes to be due to better availability of nutrients and their translocation resulted in significantly higher seed and stover yield in fenugreek under Rhizobium inoculation and PSB and KSB in soil application. The results corroborated with the findings of Mehta et al. (2012)^[8], Shivran et al. (2016)^[10] and Godara et al. (2017)^[5].

Conclusion

Based on one year experimental results, it seems quite logical to conclude that higher production of fenugreek (Gujarat Fenugreek- 2) can be obtained by application of FYM @ 4 t/ha + Seed treatment of *Rhizobium* @ 30 ml/kg seed + Soil application of PSB + KSB @ 3 L/ha each on medium black calcareous clayey soil under South Saurashtra Agro-climatic Zone.

References

- 1. Agrawal S, Divakar EV, Sharma RK. Seed spices production and quality, Pointerpublisher, Jaipur. India, 2001, 12-13.
- 2. Anonymous. District-wise area, production and yield of important food & non- food crops in Gujarat State. Directorate of Agriculture, Gujarat State, Gandhinagar, 2017.
- 3. Bhavsar GC, Kapadia NS, Patel NM. Studies of fenugreek (*Trigonella foenum graecum* L.). Indian Journal Pharma. Science. 1980; 42:39-40.
- Choudhary BR, Gupta AK, Parihar CM, Jat SL, Singh DK. Effect of integrated nutrient management on fenugreek (*Trigonella foenum-graecum*) and its residual effect on fodder pearl millet (Pennisetum glaucum). Ind. J. of Agron. 2011; 56(3):189-195.
- 5. Godara AS, Singh R, Chouhan GS, Nepalia V. Yield and economics of fenugreek (*Trigonella foenum-graecum* L.) as influenced by fertility levels, biofertilizers and brassinosteroid. Legume Research. 2017; 40(1):165-169.
- Kumawat K, Patel PP, Reddy TM, Hakla CR. Effect of liquid and solid bio-fertilizers (Rhizobium and PSB) on growth attributes, yield and economics of fenugreek (*Trigonella foenum-graecum* L.). International journal of chemical studies. 2017; 20(2):513-524.
- Meena KJ, Kumar S, Kumar M, kumar D. Studies on effect of biofertilizers with chemical fertilizers on growth, yield and quality of fenugreek (*Trigonella foenum-graecum* L.). International Journal of Agricultural Sciences. 2015; **11**(1):198-200.
- 8. Mehta RS, Anwer MM, Aishwath OP, Meena RS. Growth, yield and quality of fenugreek as influenced by nitrogen, phosphorus and bio-fertilizers. Indian Journal of Horticulture. 2012; 69(1):94-97.

- Sammauria RA, Yadav RS. Integrated nutrient management for improvement in growth and yield of fenugreek (*Trigonella foenum-graecum* L.) under irrigated conditions of sandy soils of Rajasthan. Journal of Medicinal and Aromatic Plant Sciences. 2009; 31(2)::09-112.
- Shivran AC, Jat NL, Dhirendra Singh, Rajput SS, Mital, GK. Effect of integrated nutrient management on productivity and economics of fenugreek (*Trigonella foenum-graecum* L.). Legume Research. 2016; 39(2):279-283.