

P-ISSN: 2349-8528
E-ISSN: 2321-4902
IJCS 2018; 6(5): 1340-1342
© 2018 IJCS
Received: 11-07-2018
Accepted: 13-08-2018

N Vara Prasad

College of Horticulture, Dr. YSR Horticultural University, Venkataramannagudem, West Godavari, Andhra Pradesh, India

K Uma Jyothi

College of Horticulture, Dr. YSR Horticultural University, Venkataramannagudem, West Godavari, Andhra Pradesh, India

V Sudhavani

College of Horticulture, Dr. YSR Horticultural University, Venkataramannagudem, West Godavari, Andhra Pradesh, India

RV Sujatha

College of Horticulture, Dr. YSR Horticultural University, Venkataramannagudem, West Godavari, Andhra Pradesh, India

P Pratyusha Bhagavati College of Horticulture, Dr. YSR Horticultural University, Venkataramannagudem, West Godavari, Andhra Pradesh, India

Studies on effect of biofertilizers in combination with inorganic nutrients on NPK uptake by plant and NPK status of soil after harvest in sprouting broccoli (Brassica oleracea var. italica L.)

N Vara Prasad, K Uma Jyothi, V Sudhavani, RV Sujatha and P Pratyusha Bhagavati

Abstract

The present investigation was conducted to study the "effect of biofertilizers in combination with inorganic nutrients on NPK uptake by plant and NPK status of soil after harvest in sprouting broccoli (Brassica oleracea var. italica L.)" was conducted during rabi, 2017 at College of Horticulture, Venkataramannagudem, West Godavari District, Andhra Pradesh. The experiment was laid out in a randomized block design with three replications comprising fourteen treatments. The results indicated that there was a significant differences among the fourteen treatments and treatment T_{4} ($100 \% \mathrm{RDF}+$ Azotobacter $+\mathrm{PSB}+\mathrm{KSB}$) was recorded the maximum N, P and K uptake by plant and N, P and K status of soil.

Keywords: Biofertilizers, sprouting broccoli, NPK uptake and NPK status of soil after harvest

Introduction

Broccoli (Brassica oleracea var. italica L.) with chromosome number $2 \mathrm{n}=18$ belongs to cruciferous family. The name broccoli has been derived from Italian word 'brocco' means shoot and the word sprouting broccoli refers to development of young flower bud which have been used as vegetable. Broccoli has good organoleptic properties and is a very delicious vegetable. It contains high protein (3.3%), vitamin $C(137 \mathrm{mg} / 100 \mathrm{~g})$, vitamin A (3500 IU), vitamin $\mathrm{B}_{2}(0.12 \mathrm{mg} / 100 \mathrm{~g})$, Iron ($205 \mathrm{mg} / 100 \mathrm{~g}$) and Calcium $(0.80 \mathrm{mg} / 100 \mathrm{~g})$. Cancer Research Centre of USA indicated that broccoli has several anti-cancerogenic effects due to the presence of sulforaphane (Damato et al., 1994) ${ }^{[2]}$.

Material and methods

The present investigation entitled "Effect of biofertilizers in combination with inorganic nutrients on growth, yield and quality of sprouting broccoli (Brassica oleracea var. italica L.)" was conducted during Rabi, 2017 at College of Horticulture, Venkataramannagudem, West Godavari District, Andhra Pradesh. The soil is of red sandy loam with good drainage and moderate water holding capacity. The physical composition of soil was sand 70%, silt 20% and clay 10% and the chemical composition of soil was soil $\mathrm{p}^{\mathrm{H}} 6.96$, E.C. $0.24 \mathrm{dS} \mathrm{m}^{-1}$, Organic Carbon 0.34%, available nitrogen $136.26 \mathrm{~kg} / \mathrm{ha}$, available phosphorus $38.74 \mathrm{~kg} / \mathrm{ha}$ and available potassium $166.22 \mathrm{~kg} / \mathrm{ha}$. The experiment was carried out on Pusa KTS-1 of sprouting broccoli. The experiment was laid out in a randomized block design with three replications comprising fourteen treatments. The experimental area was prepared by ploughing once with a mould board plough followed by two harrowing and divided into plots of $3 \mathrm{~m} \times 3 \mathrm{~m}$. The seedlings of thirty five days old and a height of 15 cm with three to four leaves were transplanted in the second week of November, 2017 in the experimental field. At the time of final field preparation, farm yard manure @ 20 t /ha was applied to the soil as a basal dose as per the recommendation. Biofertilizers such as Azotobacter, phosphorous solubilizing bacteria and potassium solubilizing bacteria were thoroughly mixed with FYM for rapid multiplication under shade, prior to application in main field. They were applied as basal dressing ($5 \mathrm{~kg} / \mathrm{ha}$). Both organic and inorganic fertilizers were applied on treatment basis. Irrigation and other intercultural operations were done when necessary. The effect biofertilizers in combination

Correspondence

N Vara Prasad
College of Horticulture,
Dr. YSR Horticultural University, Venkataramannagudem, West Godavari, Andhra Pradesh, India

With inorganic nutrients on NPK uptake by plant and NPK status of soil after harvest was observed. The various nutrient uptake parameters were recorded from five randomly selected tagged plants. Nutrient uptake parameters like N uptake, P uptake and K uptake and NPK status of soil were subjected to statistical analysis as per method suggested by Panse and Sukhatame (1967).

Results and discussion

The data on NPK uptake by plant and NPK status of soil after harvest such as N uptake, P uptake and K uptake and NPK
status of soil are presented in the Table 1 . The treatment T_{4} ($100 \% \mathrm{RDF}+$ Azotobacter $+\mathrm{PSB}+\mathrm{KSB}$) recorded maximum N uptake by plant ($122.67 \mathrm{Kg} / \mathrm{ha}$) is due to to expanded root surface area through increased root growth and root hair development. These findings are line with Narayanamma et al. (2005) ${ }^{[7]}$, Sable and Bhamare (2007) ${ }^{[11]}$, Kumar and Devi (2016) ${ }^{[4]}$ in cauliflower. The treatment $\mathrm{T}_{4}(100 \%$ RDF+ Azotobacter $+\mathrm{PSB}+\mathrm{KSB}$) recorded maximum P uptake ($50.33 \mathrm{Kg} / \mathrm{ha}$) is due to the growth of bacteria and presence of mycorrhizal fungi around plant rhizosphere dramatically increased the surface area

Table 1: Effect of biofertilizers in combination with inorganic nutrients on NPK uptake and NPK status of soil after harvest in sprouting broccoli (Brassica oleracea var. italica L.)

T. No	Treatments	NPK status of soil after harvest			N uptake of plant (kg/ha)	P uptake of plant (kg/ha	K uptake of plant (kg/ha)
		N (kg/ha)	P (kg/ha)	K (kg/ha)			
T_{1}	100\% RDF + Azotobacter	145.33	55.67	104.07	121.67	45.66	96.71
T_{2}	100\% RDF + PSB	120.67	61.67	103.26	106.67	49.29	95.33
T_{3}	$100 \% \mathrm{RDF}+\mathrm{KSB}$	119.33	54.04	123.33	106.81	44.52	107.48
T_{4}	100% RDF + Azotobacter + PSB + KSB	146.11	62.04	124.67	122.67	50.33	108.33
T5	75\% RDF + Azotobacter	128.33	45.33	99.05	111.67	30.33	91.75
T_{6}	75\% RDF + PSB	104.04	53.67	98.08	97.33	42.67	90.67
T_{7}	75\% RDF + KSB	104.41	44.03	117.08	96.04	29.05	103.67
T_{8}	75\% RDF + Azotobacter + PSB + KSB	130.67	54.33	118.52	113.67	42.33	104.00
T9	50\% RDF + Azotobacter	114.67	38.33	96.67	102.33	22.33	88.33
T_{10}	$50 \% \mathrm{RDF}+\mathrm{PSB}$	94.67	49.37	95.15	82.04	31.33	86.35
T_{11}	$50 \% \mathrm{RDF}+\mathrm{KSB}$	93.04	37.04	108.78	81.63	21.04	102.33
T_{12}	$50 \% \mathrm{RDF}+$ Azotobacter + PSB + KSB	115.82	50.03	111.15	103.67	32.45	103.37
T_{13}	Azotobacter + PSB + KSB	87.67	30.75	94.41	79.67	20.29	85.71
T_{14}	100\% RDF (100:60:40 NPK kg ha ${ }^{-1}$)	117.04	51.03	102.19	104.11	39.04	94.71
	S Em \pm	2.895	1.414	2.733	2.756	0.976	1.622
	CD at 5\%	8.463	4.134	7.989	8.054	2.853	4.742

F roots for exploration of nutrients particularly phosphorus. There are evidences to show that exudation of citrate and malate from roots effectively solubilises unavailable phosphorus sources accompanied by extensive root hair. These bio fertilisers were able to increase mobility and enhance absorption of P which should have increased the uptake of P. These findings are line with Mohandas (1987) ${ }^{[6]}$, Chaudhary et al. (2005) ${ }^{[1]}$ in tomato and Narayanamma et al. (2005) ${ }^{[7]}$, Kumar and Devi (2016) ${ }^{[4]}$ in cauliflower. The treatment $\mathrm{T}_{4}(100 \% \mathrm{RDF}+$ Azotobacter $+\mathrm{PSB}+\mathrm{KSB})$ recorded maximum K uptake ($108.33 \mathrm{Kg} / \mathrm{ha}$) is due to the well-developed root system, additional nutrients supplied by FYM, significant improvement in soil physical properties, better absorption of nutrient by the plant due to higher microbial and metabolic activity and higher photosynthesis rate, enhanced the K uptake. These findings are line with Parmar and Sharma (2001) ${ }^{[9]}$, Narayanamma et al. (2005) ${ }^{[7]}$, Parmar et al. (2006) ${ }^{[10]}$ and Kumar and Devi (2016) ${ }^{[4]}$ in cauliflower. The treatment $\mathrm{T}_{4}(100 \%$ RDF + Azotobacter + $\mathrm{PSB}+\mathrm{KSB}$) recorded maximum nitrogen ($146.11 \mathrm{~kg} / \mathrm{ha}$) is due to the significant buildup of available N in the soil is due to bio fertilizer application especially azotobacter which increased the activity of N fixing bacteria and build up inorganic N status of the soil due to biochemical degradation and mineralization, thereby, resulting in higher accumulation of N in soil and fixation of atmospheric nitrogen. The treatment $\mathrm{T}_{4}(100 \% \mathrm{RDF}+$ Azotobacter $+\mathrm{PSB}+\mathrm{KSB})$ recorded maximum phosphorus ($62.04 \mathrm{~kg} / \mathrm{ha}$) is due to the availability of more phosphorus may be due to presence of mycorrhizal fungi which might be possessing P solubilizing activity. They are capable of utilizing P from inositol phosphates and possess phosphatase activity which further affected their ability to release P from soil organic matter and
hence increase the available P in soil. The treatment T_{4} (100% $\mathrm{RDF}+$ Azotobacter $+\mathrm{PSB}+\mathrm{KSB}$) recorded maximum potassium ($124.67 \mathrm{~kg} / \mathrm{ha}$) in soil after harvest is due to the increase in available K may be due to the reduction of fixation and release of K due to the interaction of organic matter with soil besides addition of K to the available K pool of the soil. These results are in line with Milosevic et al. (1995) ${ }^{[5]}$ in cabbage, Shalini et al. (2002) ${ }^{[12]}$ in knol khol, Narayanamma et al. (2005) ${ }^{[7]}$ in cauliflower and Kumar et al. (2017) ${ }^{[3]}$ in broccoli.

Conclusion

From the above study, it was concluded that, among different treatment combinations, treatment $\mathrm{T}_{4} \quad(100 \%$ RDF+ Azotobacter $+\mathrm{PSB}+\mathrm{KSB}$) was superior in N, P and K uptake and N, P and K status of soil is due to the combined effect of biofertilizers and inorganic fertilizers.

References

1. Chaudhary MR, Talukdar NC, Saikia A. Changes in organic carbon, available $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ under integrated use of organic manures, biofertilizers and inorganic fertilizer on sustaining productivity of tomato and fertility of soil. Research on Crops. 2005; 6:547-50.
2. Damato GL, Trotta, Elia. Cell size, transplant age and cultivars effects on timing field production of broccoli for processing. Acta Horticulture. 1994; 371:53-60.
3. Kumar P, Kumar S, Meena RK, Kumar R, Rawat R. Efficacy of biofertilizers on growth, yield and quality of sprouting broccoli (Brassica oleracea L. var. italica Plank) cv. Pusa KTS-1. Plant Archives. 2017; 17(2):1647-50.
4. Kumar V, Devi S. Effect of Bio-fertilizers and Inorganic Amendments on Mineral Composition and Quality of Brassica oleracea. Asian Journal of Advanced Basic Science. 2016; 4(2):20-26.
5. Milosevic N, Govedarica M, Jarak M, Bogdanovic D, Ubavic M, Cuvardic M. Number of microorganisms and dehydrogenase activity in soils under peas, onion and cabbage. Mikrobiologija. (Abstracted from AGRIS 195596). 1995; 32(2):259-67.
6. Mohandas S. Field response of tomato (Lycopersicon esculentum Mill. cv. "Pusa Ruby") to inoculation with VAM fungus, Glomus fasiculatum and with Azotobacter vinelandii. Plant and Soil. 1987; 98:295-97.
7. Narayanamma M, Chiranjeavi CH, Reddy IP, Ahmed SR. Integrated nutrient management in cauliflower (Brassica oleracea var. botrytis L.). Vegetable Science. 2005; 32(1):62-64.
8. Panse VG, Sukhatame PV. Statistcal methods for agricultural workers. ICAR, New Delhi, 1985.
9. Parmar DK, Sharma V. Integrated nutrient management in cauliflower under mid hills of Eastern Himalayas. Annals of Agricultural Research. 2001; 22(3):432-33.
10. Parmar DK, Verma TS, Deor BS, Mishra A, Vermani A. Enhancing yield and profitability of a Western Himalayan vegetable production system by balancing nutrient inputs through farmyard manure and synthetic fertilizer applications. Journal of Sustainable Agriculture. 2006; 29:89-99.
11. Sable PB, Bhamare VK. Effect of biofertilizer (Azotobacter and Azospirillum) alone and in combination with reduced levels of nitrogen on quality of cauliflower cv. Snowball-16. Asian Journal of Horticulture. 2007; 2(1):215-17.
12. Shalini SB, Channal HT, Hebsur NS, Dharmatti PR, Sarangamath PA. Effect of integrated nitrogen management on nutrient uptake in knol khol, yield and nutrient availability in soil. Karnataka Journal of Agricultural Sciences. 2002; 15(1):43-46.
