International Journal of Chemical Studies

P-ISSN: 2349–8528 E-ISSN: 2321–4902 IJCS 2018; 6(6): 1964-1967 © 2018 IJCS Received: 11-09-2018 Accepted: 15-10-2018

K Venkataramudu

Department of Fruit science, College of Horticulture, Anantharajupeta, Dr. YSR Horticultural University, Andhra Pradesh, India

SM Rajesh Naik

Department of Fruit Science, College of Horticulture, Venkataramannagudem, Dr. YSR Horticultural University, Andhra Pradesh, India

M Viswanath

Department of Horticulture, Dr. YSR Horticultural University, Andhra Pradesh, India

G Chandramohan Reddy

Department of Horticulture, CCS Haryana Agricultural University, Hisar, Haryana, India

Correspondence K Venkataramudu Department of Fruit science, College of Horticulture, Anantharajupeta, Dr. YSR Horticultural University, Andhra Pradesh, India

Packaging and storage of pomegranate fruits and arils: A review

K Venkataramudu, SM Rajesh Naik, M Viswanath and G Chandramohan Reddy

Abstract

Pomegranate is one of the most important fruit crops in India because of its adaptable nature, high profitability and being cultivated on a commercial scale in India and the fruits are good source of nutrients and bioactive compounds, mainly anthocyanins which exhibit strong chemo-preventive activities such as antimutagenicity, antihypertension, antioxidative potential and anti-cancer properties. Pomegranate fruit is a non-climacteric fruit with relatively low respiration rate and produces trace amounts of ethylene. Generally, fruit has a long storage life ranging. However, the arils removed from fruits have short storage life owing to exposure to outer environment and tissue damage resulting from processing operations. Damage to arils leads to increase in rate of respiration and ethylene production rates, alters metabolic activity, increases the rate of deterioration of nutritional and sensory attributes and notably reduces the shelf-life. In order to meet the consumers present demand for fresh, convenient and high quality ready-to-eat arils, various processing techniques have been developed among which, modified atmosphere packaging along with low temperature storage are being increasingly employed to extend the shelf life of arils.

Keywords: Modified atmosphere packaging, pomegranate, arils, shelf life, storage

Introduction

Pomegranate (*Punicagranatum* L.) popularly known as Anar is widely cultivated in India, Iran, China, Turkey, USA, Spain, Azerbaijan, Armenia, Afghanistan, Uzbekistan, Pakistan, Tunesia, Israel, dry regions of South East Asia, Peninsular Malaysia, the East Indies and Tropical Africa and gaining lot of attention world over, due to its high economic and nutritional values. The estimated global cultivated area of pomegranate is 3.0 lakh hectares with a production of 2.5 million tonnes (Patil *et al.* 2014)^[28]. It is estimated that by 2025, the area under pomegranate would increase to 7.5 lakh hectares and the production is expected to increase by 10 fold and export by 6.97 fold (Krishna Kumar, 2014).^[19]

India is the world's leading pomegranate growing country with about 1.81 lakh hectares of area, 17.89 lakh tonnes of production and 9.88 tonnes of productivity per hectare. Pomegranate cultivation today is a highly lucrative and remunerative agriculture business in India. The alluring monetary return per unit area from this crop has resulted in steady increase in area, production and export of pomegranate during last two decades. The major pomegranate growing states in India are Maharashtra (1.28 lakh hectares), the Pomegranate Basket of India (Annual Report of NRCP, 2015-16) followed by Karnataka (19040 ha), Andhra Pradesh (7910 ha) and Gujarath (9380 ha) (Horst, 2016). ^[18] In recent past, pomegranate cultivation has been gaining momentum in Rajasthan, Odisha, Chhattisgarh, Uttarakhand, Madhya Pradesh, Himachal Pradesh, Tamil Nadu, Mizoram, Nagaland, Lakshadweep, Jharkhand and Jammu and Kashmir. There are more than twenty five pomegranate varieties grown in different parts of India. However, the varieties *viz* Bhagwa, Ganesh, Ruby, Phule Araktha and Mridula are grown on commercial scale in India. Among these varieties, Bhagwa contributes to more than 90% of the area and production.

The fruit of pomegranate is symbolic of plenty and very much liked for its cool, refreshing juice and valued for its nutritional properties. Pomegranate is currently ranked 18th interms of fruit consumed annually in the world. It is predicted that as a result of its health benefits, availability in convenient pre-packed aril form and the improvement form of cultivator's selection it will move to 10th place in the next 5 years (Sudarshan *et al.* 2013). ^[32]

Botanically, the fruit of pomegranate is known as 'Balusta' which is a modified berry.

The edible part of fruit is called 'aril' and constitutes 52 per cent of total fruit (w/w), comprising 78 per cent juice and 22 per cent seeds (Kulkarni and Aradhya, 2005). ^[20] Arils are rich in vitamin-C, vitamin-K, anti-oxidants and polyphenols such as tannins, quercetin and anthocyanin sand hence considered good for health with anti-cancer properties (Seeram *et al.* 2006 ^[21] and Adams *et al.* 2006). ^[1] Pomegranate seeds are excellent source of dietary fibre and also rich source of various minerals and micronutrients *viz.*, K, P, Mg, Ca, Zn, Mnand Fe (Hobani *et al.* 2004). ^[17] Pomegranates have very little fat and do not contain cholesterol. The arils are also used as garnish for desserts and salads (Al-Maiman and Ahmad, 2002). ^[3] Dark coloured pomegranate arils are related to a higher anti-oxidant activity compared to light coloured arils (Tzulker *et al.* 2007). ^[34]

Pomegranate is commercially grown for its sweet acidic fruits which are mainly consumed fresh (table purpose) by extracting the arils or utilized as processed products namely juice, yoghurts, syrup, grenadine, anardana, anar-rub, jam, jelly, wine, carborated beverage etc. The difficulty encountered in separating the edible arils from pomegranate fruit has several limitations for its direct consumption unlike the other fruits e.g., oranges, banana, grapes etc. (Pal and Gaikwad, 2014). ^[26] The supply of arils of pomegranate in ready-to-eat form would be convenient with desirable alternative to the consumption of fresh fruits and may further increase pomegranate demand by consumers. The ready-toeat pomegranate arils offer an appealing product compared to the whole fruit and increases the prospect of production and consumption. Hence, removal and processing of pomegranate arils is of great importance for convenience of the consumers. The demand for minimally processed pomegranate arils (ready-to-eat arils) is increasing in domestic as well as international markets, because of high economic importance, healthiness and their desirable characteristics as compared to whole pomegranate fruit and changing food consumption pattern.

Pomegranate fruit is a non-climacteric fruit with relatively low respiration rate and produces trace amounts of ethylene (Caleb et al. 2012). [10] The average rate of respiration of fresh arils varies with pomegranate cultivar. Generally, pomegranate fruit has a long storage life ranging from 2 to 7 months, depending on the cultivar and storage conditions. However, the arils extracted from fruits have short storage life owing to exposure to outer environment and tissue damage resulting from processing operations. Damage to arils, in fact, leads to increase in rate of respiration and ethylene production rates, alters metabolic activity, increases the rate of deterioration of nutritional and sensory attributes and notably reduces the shelf-life. In order to meet the consumers present demand for natural, fresh, flavours, convenient and high quality ready-to-eat pomegranate arils, various processing techniques have been developed among which, minimal processing and modified atmosphere packaging along with low temperature storage are being increasingly employed to extend the shelf life of arils by maintaining the quality.

Package and storage go hand in hand. Storage of products is influenced by the kind of packaging material used besides storage temperatures. Packaging protects the arils, serves as an alternative measure for controlling diseases and provides structural support for convenient storage and transport. Various storage and packaging applications have been under study by research workers for safe storage of pomegranate arils of different varieties. Many types of packaging material have been used which include polypropylene (PP), low density polyethylene (LDPE), high density polyethylene (HDPE), metalized polyester (MP) bags, heat seal trays with oriented polypropylene film (OPPF), rigid polystyrene vessels (RPV), perforated polypropylene trays (PPT), polyethylene terephthalate packs (PETP), polyethylene standing pouch (PESP), polypropylene modular mates (PPMM) *etc.* The recent past documented results pertaining to the influence of packaging material and storage temperatures on the quality and shelf life of pomegranate fruit as well as arils are reviewed in this chapter

Effect of packing material on quality and shelf life of pomegranate fruits

Artes *et al.* (2000 and b) ^[5] studied the effect of different thermal treatments and packaging material in pomegranate cv. 'Mollar de Elche'. They observed minimum weight loss of 0.07 per cent, when exposed to thermal treatment prior to storage at 5° or 2°C for 12 weeks, whereas, weight loss is 1.15% to 1.34% in unpacked (control).

Garcia *et al.* $(2000)^{[12]}$ studied the respiratory intensity (RI) of minimally processed pomegranate 'Mollar' arils as influenced by a semi-permeable and an impermeable plastic packaging at a storage temperature of 4°C for 10 days. High quality pomegranate arils packed in semi-permeable plastic package and stored at refrigerated conditions prolonged the shelf life (10 days). The high relative humidity within the packages helped to reduce weight loss, maintaining the turgency and texture of the pomegranate arils. Storage of pomegranate arils under optimal MA have been shown to reduce the risk of enterobacteria, lactic acid bacteria, mesophilic, psychrotrophic, as well as moulds and yeast counts (Sepulveda *et al.* 2000^[31] and Lopez-Rubira *et al.* 2005).^[21] Sepulveda *et al.* (2001)^[31] revealed that minimally processed pomegranate arils (cv. Espanola) packed in BB4 (EVA bags) maintained the physical, chemical and microbiological characters in good condition for a period of 7 days compared to control. Nanda et al. (2001)^[22] studied the effect of individual shrink film wrapping with two polyolefin films (BDF-2001 and D-955) and skin coating with a sucrose polyester (SPE) on the shelf life and quality of soft seeded pomegranate cv. Ganesh stored at 8°, 15° and 25°C. Weight loss was greatly reduced in all the packaging treatments whereas, changes in acidity, sugars and vitamin C were lower in wrapped fruits than that of non-wrapped fruits during 12 weeks of storage at 8°C.

The overall quality, anthocyanin content and anti-oxidant activity of minimally processed pomegranate arils of cv. Mollar of Elche (125g) stored under modified atmosphere packaging (MAP) at 5°C was assessed by Rubira *et al.* (2005). ^[22] They reported that the polypropylene baskets sealed on the top with bioriented polypropylene (BOPP) was found to be superior in overall quality, anthocyanin content and anti-oxidant activity up to 15days at 5°C.

Palma *et al.* (2009) ^[27] evaluated the processed seeds of pomegranate cv. Primosole packed in polypropylene trays (150 g each), sealed with 40 μ m thick polypropylene film and subsequently stored at 5°C for 10 days. By the end of storage, pomegranate seeds did not exhibit visible symptoms of decay and no undesirable flavour developed. Ayhan and Esturk (2009) ^[6] studied the overall quality and shelf life of minimally processed and modified atmosphere packed readyto-eat pomegranate arils packed in Polypropylene (PP) trays sealed with bioriented polypropylene (BOPP) film. The findings revealed that the arils could be stored for 18 days with commercially acceptable high quality when stored at 5°C. Bayram et al. (2009)^[7] studied the storage performance of pomegranate cv. Hicaznar using different packaging materials and found that streck film wrapped and modified atmosphere packed fruits stored at 6°C and 90% RH showed the highest visual and quality scores upto six months of storage. Aindongo et al. (2014)^[2] investigated the effects of Passivemodified atmosphere packaging (MAP) on the quality of minimally processed pomegranate (cv. Bhagwa) arils and arilsacs stored at 5°C, 10°C, 15°C and 22°C and reported that high rate of respiration and transpiration of arils and aril sacs compared to whole fruit and polyethylene and polymeric film showed greater positive effects in maintaining the quality and extended the shelf life of arils (9 days) and aril-sacs (12 days). Bhatia et al. (2015), [8] the effect of different packing materials (PP, LDPE and KPA) on arils of pomegranate cv. Mridula stored at 5±2°C and 85±5% RH for 15 days. The results revealed that arils packed in PP bags retained better ascorbic acid, antioxidants and anthocyanin and also maintained higher acceptance score (above 6) compared to LDPE and KPA packs upto the 15 days of storage. Safari et al. (2016) [29] studied the effect of packing material (PP, LDPE, HDPE and MP) on pomegranate arils cv. Bhagwa stored under cold storage conditions and room temperature. They observed that arils packed in HDPE 40 per cent microns without perforations had the maximum shelf life upto 22.66 days and also retained highest TSS (14.55°Brix), Brix-acid ratio (46.00%), Total sugars (8.54) and lowest titratable acidity (0.33%).

Effect of storage temperatures on quality and shelf life of pomegranate fruits

Hess-Pierce and Kader (2003) ^[16] found that the seeds of pomegranate cv. Wonderful those had suffered mechanical damage during seed preparation appeared soft and aqueous and were much more susceptible to microbial spoilage. The commercial life of the prepared seeds was 8 days at 10°C and 12 days at 5°C.

Ghatge (2005) ^[14] reported that, when fruits of pomegranate cv. Ganesh stored at ambient temperature ($26-27^{\circ}$ C) and low temperature ($4-5^{\circ}$ C), the shelf life of fruits could be extended up to 6 weeks in low temperature, and up to 4 weeks at ambient temperature storage. Ergun and Ergun (2009) studied the efficacy of varying concentration of 10 and 20 per cent honey dip treatment on the quality and shelf life of minimally processed pomegranate arils of "Hicaznar" stored at 4°C in loosely closed plastic containers. It was reported that, the total aerobic microbial count was lower.

Caleb *et al.* (2013) ^[10] investigated the effect of passive modified atmosphere packaging (MAP) and storage temperatures (5°, 10° and 15°C) on post-harvest quality attributes, compositional change in flavour attributes and microbiological quality of minimally processed arils of pomegranate cultivars, 'Acco' and 'Herskawitz'. The results revealed that the post-harvest life of MA-packaged 'Acco' and 'Herskawitz' arils was upto 10 days at 5°C.

The experimental results on influence of low temperature on storage behavior of pomegranate arils of cv. Torsh Syabe Lorestan revealed the lowest microbial count, lower titratable acidity, total soluble solids, and total anthocyanin even after 14-days of storage (Ghasemnezhad *et al.* 2013). ^[13] Oluwafemi *et al.* (2013) ^[24] evaluated the effect of storage temperatures on arils of two pomegranate cultivars *viz.*, 'Acco' and 'Herskawitz. (75, 100 and 125 g) packed in trays and heat sealed with polylid film and reported that at high storage temperature weight loss and O2 concentration

continuously decreased below the critical limit (2%) at 4 days of storage, while at 5°C, this lower limit was not reached. Shelf life of arils was limited to 10, 7 and 3 days at 5°, 10° and 15° C, respectively.

The physico-chemical parameters of pomegranate as influenced by packing and storage conditions were studied by Tabatabaekoloor and Ebrahimpor (2013). [33] The weight loss for EPE-foam and polyethylene-film wrapped fruits were 0.80% and 0.98% at refrigerated storage and 1.51% and 1.84% at ambient conditions, respectively. During the same period, non-wrapped fruits lost 4.97% and 9.50% of weight at ambient and refrigerated conditions, respectively. Omayma et al. (2014)^[25] reported that processed pomegranate arils of cv. 'Wonderful' pretreated with ozone for 1, 5 and 10 min. and stored under cold storage at 4°C maintained good quality and appearance for 19 days without microbial visual defects. The weight loss of pomegranate fruits of cv. Wonderful increased with increase in storage temperature and storage period (Arendse et al. 2014).^[4] Fruits stored at 5°C and 7.5°C recorded weight loss of 27.67 per cent and 45.67 per cent, respectively for 5 months after storage. Colour of fruit and arils decreased whereas, TSS and titratable acidity increased throughout the storage period.

Effect of storage temperature on nutritional composition of arils of three pomegranate cultivars (Arakta, Bahgwa and Ruby) were stored at 1°C, 4°C, and 8°C at 95 per cent RH was studied for 14 days. Nutritional composition of arils was not significantly affected at 1°C and 4°C for 14 days. Temperature did not affect total soluble solids, but increased TA and reduced TSS/TA and nomould growth was observed in arils stored at 1°C after 14 days (Grady *et al.*2014). ^[15]

Conclusion

Packaged pomegranate fruits and arils stored at low temperatures, has retained appreciable nutritional and bioactive compound levels and other quality attributes such as aril colour, taste, flavor and overall acceptability with low microbial count during the entire storage period.

References

- 1. Adams LS, Seeram NP, Aggarwal BB, Takada YS. Heber D. Pomegranate Juice, Total Pomegranate Ellagitannins, and Punicalagin Suppress Inflammatory Cell signaling in Colon Cancer Cells. Journal of Agricultural and Food Chemistry. 2006; 54:980-985
- 2. Aindongo WV. Post-harvest physiology and effects of modified atmosphere packaging and anti-browning treatment on quality of pomegranate arils and aril-sacs (cv. Bhagwa). M.Sc. Thesis. Stellenbosch University, 2014.
- 3. Al-Maiman SA, Ahmad D. Changes in physical and chemical properties during pomegranate (*Punica granatum*) fruit maturation. Food Chemistry. 2002; 76:437-41.
- 4. Arendsea E, Fawoleb OA, Oparaa UL. Influence of storage temperature and duration on postharvest physico-chemical and mechanical properties of pomegranate fruit and arils. Journal of Food Science. 2014; 2:114-150.
- Artes F, Tudela JA, Villaescusa R. Thermal postharvest treatment for improving pomegranate quality and shelf life. Postharvest Biology and Technology. 2000a; 18:245-251.
- 6. Ayhan Z, Esturk O. Overall quality and shelf life of minimally processed and modified atmosphere packaged

"ready-to eat" pomegranate arils. Journal of Food Science. 2009; 74(5):C399-C405.

- 7. Bayram E, Dundar O, Ozkaya O. Effect of different packaging types on storage of Hicaznar pomegranate fruits. Acta Horticulture. 2009; 818:319-22.
- 8. Bhatia K, Asrey R, Varghese E. Correct packaging retained phytochemical, antioxidant properties and increases shelf life of minimally processed pomegranate (*Punica granatum* L.) arils Cv. Mridula. Journal of Scientific and Industrial Research. 2015; 74:141-144.
- 9. Bhatia K, Asrey R, Surender Singh, Kannaujia PK. Influence of packaging material on quality characteristics of minimally processed Mridula pomegranate (Punica granatum) arils during cold storage. Indian Journal of Agricultural Sciences. 2013; 83(8):872-76.
- Caleb OJ, Oparaa UL, Pramod V, Mahajan MM, Lucky M, Andreas GJ. Effect of modified atmosphere packaging and storage temperature on volatile composition and postharvest life of minimally-processed pomegranate arils (cvs. 'Acco' and 'Herskawitz'). Post-harvest Biology and Technology. 2013; 79:54-61.
- 11. Ergun M, Ergun N. Maintaining quality of minimally processed pomegranate arils by honey treatments. British Food Journal. 2009; 111:396-06.
- 12. Garcia E, Salazar DM, Melgarejo P, Coret A. Determination of the respiration index and of the modified atmosphere inside the packaging of minimally processed products. Center International de hautes etudes agronomiques, Mediterraneennes, 2000, 247-251.
- Ghasemnezhad M, Zareh Ali-Shiri, M. and Javdani, Z. The arils characterization of five different pomegranates (*Punica granatum* L.) genotypes stored after minimal processing technology. Journal of Food Science and Technology, 2013, 13197-013-1213-6.
- Ghatge PU, Kulkarni DN, Rodge AB, kshirsagar RB. Studies on Post harvest treatments for increasing storage life of pomegranate. Journal of soils and crops. 2005; 15(2):319-322.
- 15. Grady LO, Sigge G, Caleb OJ, opera UL. Effects of storage temperature and duration on chemical properties, proximate composition and selected bioactive components of pomegranate (*Punica granatum* L.) arils. Food Science and Technology. 2014; 57:508-15.
- Hess-Pierce B and Kader AA. Responses of 'wonderful' pomegranate to controlled atmospheres. Acta Horticulture. Proceedings of 8th International conference. 2000; 600:751-757.
- Hobani AI. Rheology of Pomegranate juice extracts and concentrates. Alex Journal of Agricultural Research. 2004; 44(3):87-99.
- 18. Horticultural Statistics at a glance. Horticulture Statistics Division, department of Agriculture, cooperation and farmers welfare, ministry of Agriculture and Farmers welfare, Government of India, 2015, 190.
- 19. Krishna Kumar NK. National conference on opportunities for production and supply chain of pomegranate. 17-19th June, UHS, Bhagalkot, Karnataka, 2014.
- 20. Kulkarni AP, Aradhya SM. Chemical changes and antioxidant activity in pomegranate arils during fruit development. Food Chemistry. 2005; 93:319-324.
- 21. Lopez-Rubira V, Conesa A, Allende A, Artes F. Shelf life and overall quality of minimally processed pomegranate arils modified atmosphere packaged and

treated with UV-C. Postharvest Biology and Technology. 2005; 37:174-85.

- 22. Nanda S, Rao DVS, Shantha-Krishnamurthy. Effects of shrink film wrapping and storage temperature on the shelf life and quality of pomegranate fruits cv. Ganesh. Post-harvest Biology and Technology. 2001; 22(1):61-69.
- 23. National Research Centre on pomegranate, Solapur. Annual Report, 2015-16.
- 24. Oluwafemi J, Caleb Umezuruike OL, Pramod V, Mahajan M Manley, Mokwenad L, Andreas GJ, Tredoux. Effect of modified atmosphere packaging and storage temperature on volatile composition and postharvest life of minimally-processed pomegranate arils (cvs. 'Acco' and 'Herskawitz'). Postharvest Biology and Technology. 2013; 79:54-61.
- 25. Omayma M, Ismail K, Nagy SA, Moustafa M, Zohair. Effect of antioxidant and ozone treatment on the postharvest quality of minimally processed pomegranate arils of Wonderful variety. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2014; 5(2):1980-91.
- Pal RK, Nileswar N. Gaikwad. Post-harvest management and value addition in pomegranate. National conference on pomegranate at Bhagalkot, Karnataka. 2014; 9:97-104.
- 27. Palma A, Schirra M, Aquino SD, La Malfa S, Continella G. Chemical properties changes in pomegranate seeds packed in polypropylene trays. Acta Horticulture. 2009; 818:323-329.
- Patil CB, Koujalagi BL, Murthy C. Growth trends in area, production, productivity and export of pomegranate in Karnataka: An economic analysis. International Journal of Commerce and Business Management. 2014; 7(1):11-15.
- 29. Safari M, Veena J, Girwani A. Evaluation of different packaging materials on shelf life and quality of minimally processed pomegranate arils (*Punica granatum* L.). International Journal of Agricultural Science and Research. 2016; 6(3):423-432.
- 30. Sepulveda E, Galletti I, Saenz C, Tapia M. Minimal processing of pomegranate Wonderful variety. Symposium on production, processing and marketing of pomegranate in the Mediterranean region: Advances in Research and Technology, 2000, 237-242.
- 31. Sepulveda E, Saenz C, Berger H, Galletti L, Valladares C, Botti. Minimal processing of pomegranate cv Espanola: Effect of three package materials. Acta Horticulture. 2001; 55(3):711-712.
- 32. Sudarshan GM. Ananad MB, Sudulaimuttu. Marketing and post-harvest losses in fruits: Its implications on availability and economy-A study on pomegranate in Karnataka. International Journal of Management and Social Sciences Research, 2013, 2(7).
- 33. Tabatabaekolor R, Ebrahimpor R. Effect of storage conditions on the post-harvest physico-mechanical parameters of pomegranate (*Punica granatum* L.). Asian Journal of Science and Technology. 2013; 4(5):82-85.
- 34. Tzulker R, Glazer I, Bar-Ilan I, Holland D, Aviram M, Amir R. Antioxidant activity, polyphenol content, and related compounds in different fruit juices and homogenates prepared from 29 different pomegranate accessions. Journal of Agricultural and Food Chemistry. 2007; 55:9559-70