International Journal of Chemical Studies

P-ISSN: 2349–8528 E-ISSN: 2321–4902 IJCS 2018; 6(6): 794-801 © 2018 IJCS Received: 19-09-2018 Accepted: 23-10-2018

Rajashekhar L

Ph.D Scholer, Department of Soil Science and Agricultural Chemistry, Shivamogga, Karnataka, India

Gurumurthy KT

Professor, Department of Soil Science and Agricultural Chemistry, Shivamogga, Karnataka, India

Vageesh TS

Professor, Department of Soil Science and Agricultural Chemistry, Shivamogga, Karnataka, India

Dhananjaya BC

Assistant professor, Department of Soil Science and Agricultural Chemistry, Shivamogga, Karnataka, India

Ganapathi

Assistant professor, Department of Soil Science and Agricultural Chemistry, Shivamogga, Karnataka, India

Sridhar CJ

Professor, Department of Agronomy, College of Agriculture, Shivamogga, Karnataka, India

Correspondence Rajashekhar L Ph.D Scholer, Department of Soil Science and Agricultural Chemistry, Shivamogga, Karnataka, India

Soil resource characterization of Sigehadlu micro watershed, Kadur taluk of Chikmagalur district

Rajashekhar L, Gurumurthy KT, Vageesh TS, Dhananjaya BC, Ganapathi and Sridhar CJ

Abstract

A detailed soil survey was carried out in Sigehadlu micro watershed Kadur taluk, Chikkamagaluru district of Karnataka at 1:50,000 scale. The Sigehadlu micro-watershed was selected to study and understand the pedogenic characters of the soil in different physiographic regions for summit, undulating hills, side and foot slopes due to the variability in landform which affects the crop productivity. Ten soil series were identified in the study area based on the pedological investigations of typifying pedons and physico-chemical properties. The soils were characterized by shallow to deep, Colour of soil pedons varied from 2.5YR to 10 YR 5/6 (Munsell colour chart), soil structure of pedons varied from moderate to medium sub-angular blocky to moderate medium angular blocky. Textural variations in general, varied from sandy loam to clay. The clay content increased with the depth in the majority of the pedons, distribution of silt content did not follow the definite trend in the soils of pedons. The total sand content followed an irregular trend it decreased with increasing depth. The bulk density was increased with the depth. The field capacity, permanent wilting point and available water did not follow the definite trend in the soils of micro watershed. Soils of the micro-watershed were non-saline, low medium in organic carbon and available N, available P₂O₅, available K₂O and available sulphur content medium to high. The free calcium carbonate content increased with increasing depth.

Keywords: soil characterization, micro watershed, physico-chemical properties, munsell colour chart

Introduction

The natural resources of any country are the national treasure and need proper planning to make best use of them. Therefore, sustainable management practices are urgently needed all over the world to preserve the production potential of agricultural lands. Efficient management and maintenance of soil health is the key to accomplish sustained high productivity, food security and environment safety. Yadav (2003) reported that per capita arable land in India decreased from 0.34 ha in 1950-51 to 0.15 ha in 2000-01 and is expected to shrink to 0.08 ha in 2005. No possibility of further horizontal expansion in the cultivated area seems to exist. It has been also reported that 57 per cent of the total geographical area in India is suffering from various types of land degradation problems. Soil survey constitutes a valuable resource inventory linked with the survival of life on the earth. It provides an accurate and scientific inventory of different soils, their kind and nature, and extent of distribution so that one can make prediction about their character sand potentialities. It also provides adequate information in terms of land form, slope, land use as well as characteristics of soils (viz., texture, depth, structure, stoniness, drainage, acidity, salinity etc.) which can be utilized for the planning and development. Keeping this in mind, the present investigation was undertaken characterize soil in respect to morphological physical and chemical properties of Sigehadlu micro watershed, Kadur taluk of Chikkamagalur district.

Materials and Methods

Sigehadlu micro-watershed is located in Chikkamagaluru district of Kadur taluk, Karnataka state. The climate is semi-arid with a mean annual average rainfall of 600 mm. Ferruginous schist is the parent rock in the study area. Area lies between $13^{\circ} 43' 39''$ N latitude and $76^{\circ} 3' 47''$ E longitude and $13^{\circ} 42' 13''$ N and $76^{\circ} 4' 41''$ E with a spatial extent of 823.18 ha. Visual interpretation of FCC of cartosat 2.5 mts + Resourcesat-2 LISS IV MX merged data on 1:7920 scale used in conjunction with survey of India (SOI) toposheet to identify the physiographic units in the watershed (Fig 1 and 2). Soil survey was carried out using base map on 1:50,000

scale. After intensive traversing, pedon sites were located in transects along the slope from the upper to lower slopes, 23 pedons were studied depending upon soil heterogeneity, Morphological characters like colour, structure, consistency and physico-chemical properties like bulk density, water

holding capacity, pH, electrical conductivity, organic carbon, cation exchange capacity, etc., were studied for the profile samples. After correlating for the above referred properties of pedons, ten representative pedons were selected and presented in the paper.

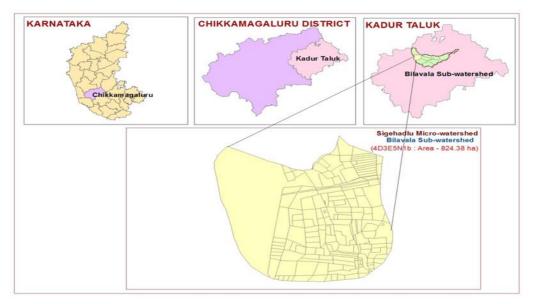


Fig 1: Location map of Sigehadlu micro-watershed

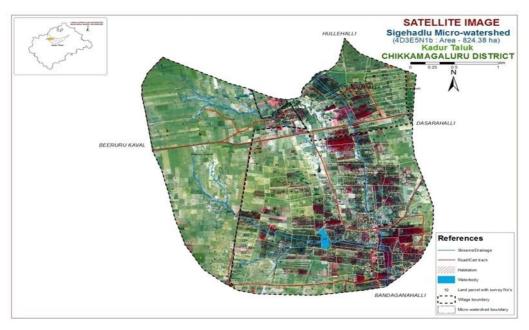


Fig 2: Cadastral map overlaid on IRS PAN+LISS IV merged imagery of Sigehadlu micro-watershed

Result and Discussion

Morphological characteristics of pedons

Soils of study area are derived from schist and ferrugenous quartzite parent rock. Based on land heterogeneity and slope ten soil pedons were identified in the micro-watershed. Selected soil pedons fall under nearly level (0-1 % slope) to gently undulating (1-3 %) slope and exhibit slight to moderate erosion with moderate to somewhat poor drainage condition.

The present investigations indicated that the pedon 4 was shallow in depth (25-50 cm), whereas pedon 1, 2, 5,7,8,9 and 10 was moderately depth (50-100 cm) and deep soil depth was (>100 cm) was observed in pedon 3 and 6. The variability in soil depth was due to the variation in topography and slope gradient. Similar observations were also made by Ram prakash and Seshagiri Rao (2002) ^[12]. Soil pedons,

colour varied from 2.5 YR 3/4 (dark reddish brown) to 10 YR 5/6 (dark brown). The variations in soil colour might be due to the differences in content and hydration of iron oxide (Shyampura *et al.*, 1994) ^[16]. Whereas, the sub-surface horizons had comparatively brighter colour throughout the profile, which might be due to low organic matter content and higher iron oxide. Similar observation was made by Madhan Mohan (2008)^[7] (Table 1).

The texture of Ap horizon in upland pedons was sandy loam whereas, lowland pedons was sandy clay loam to clay in texture. The finer soil texture of lowland horizon compared to uplands was mainly because of movement and deposition of finer fractions from surface similar findings were reported by Arun kumar *et al.* (2002) ^[1] (Table 1).

Structure was weak to moderate crumb in the surface horizons, moderate to strong sub-angular blocky in sub surface horizons. This might be due to tillage practices, organic matter addition and pressure from surface horizon resulted in development structure in surface and sub-surface layers. Similar observations were also made by Singh and Agarwal (2003) ^[17]. The consistence of soil pedons varied

from slightly hard to hard when dry, friable to firm when moist, slightly sticky to very sticky and slightly plastic to very plastic when wet. This physical behavior of soils was not only due to the textural make up but also due to type of clay minerals present in these soils (Thangasamy *et al.*, 2005)^[19] (Table 1).

Table 1: Morphological characteristics of the soil pedons of Sigehadlu micro watershed, Kadur taluk of Chikkamagaluru district,
Karnataka

Horizon	Darreth (arres)	Darmalarm	Color	Tartana	Structure		Consiste	nce	Roots	Createl features			
Horizon	Depth (cm)	Boundary	Color	Texture	Structure	Dry	Moist	Wet	ROOLS	Special features			
					Pedon 1								
Ар	0-13	CS	5YR3/4	SCL	2msbk	sh	fr	ss&sp	fmp				
Bt_1	13-34	CS	5YR4/4	SC	2msbk	h	fr	ms∓	fmp				
Bt ₂	34-47	CS	5YR3/4	SC	2msbk	sh	fr	ms∓	-	-			
Bt ₃	47-64	CS	5YR4/6	SC	1msbk	h	fr	ms∓	-				
Cr				V	Veathered par	ent mate	erial						
Pedon 2													
Ap	0-14	CS	5YR3/4	SL	1msbk	sh	fr	ss&sp	cvf				
Bt_1	14-31	GS	5YR3/4	SCL	1msbk	fr	fr	ss&sp	cvf				
Bt_2	31-43	GS	5YR3/4	SCL	1msbk	fr	fr	ss&sp	-	-			
Bt ₃	43-52	GS	5YR3/4	SCL	1msbk	fr	fr	ss&sp	-				
Cr				V	Veathered par	ent mate	erial						
	Pedon 3												
Ар	0-15	CS	10YR3/4	C	2abk	sh	fr	ms∓	fcf	0 1 1			
$\mathbf{B}\mathbf{w}_1$	15-38	GS	10YR3/2	C	2abk	sh	fr	ss&sp	ff	2cm wide cracks, more			
Bw ₂	38-52	GS	10YR5/6	SC	1msbk	sh	fr	ss&sp	fc	than30cm deep was observed on surface,			
Bw ₃	52-76	GS	10YR5/6	SCL	2msbk	sh	fr	ss&sp	-	well developed			
Bw4	76-96	GS	10YR5/6	SL	1msbk	sh	fr	ss&sp	-	pressure face were			
Bw5	96-109	GS	10YR5/6	SL	1msbk	sh	fr	fr&fr	-	observed			
Bw ₆	109-140	CS	10YR5/6	С	2abk	mh	fr	ms∓	-	observed			
Cr				V	Veathered par	ent mate	erial						
					Pedon 4								
Ар	0-10	CS	5YR4/4	SL	1msbk	sh	fr	ms∓	mf				
Bt_1	10-23	CS	5YR4/4	SCL	2msbk	sh	fr	ms∓	mf	-			
Bt ₂	23-41	CW	5YR3/4	SC	1msbk	sh	fr	ms∓	mf				
Cr				V	Veathered par	ent mate	erial						
	Pedon 5												
Ар	0-12	CS	2.5YR3/4	SCL	1msbk	Sh	fr	ms∓	ff				
Bt_1	12-28	CS	2.5YR4/4	SC	2msbk	Sh	fr	ms∓	ff				
Bt ₂	28-45	CS	2.5YR4/3	SC	2msbk	Sh	Fr	ms∓	ff	-			
Bt ₃	45-64	CS	2.5YR3/3	SC	2msbk	Н	Fr	ms∓	ff				
Cr				V	Veathered par	ent mate	erial						

(Note: Structure: 0-structure less, 1-weak, 2- moderate, f- fine, m-medium, sbk-sub-angular blocky Consistence: l-loose, sh-slightly hard, h-hard fr-friable, ss- slightly sticky, sp- slightly plastic)

Continued

Harimon	Denth (em)	Darry darry	Calar	Terteres	Store strengt		Consiste	nce	Desta	Smantal factoria
Horizon	Depth (cm)	Boundary	Color	Texture	Structure	Dry	Moist	Wet	Roots	Special features
Pedon 6										
Ар	0-10	CS	5YR3/4	SL	1msbk	sh	fr	ss &sp		
Bt_1	10-19	AS	5YR4/6	SCL	1msbk	sh	fr	Ss&sp		
Bw ₂	19-37	CS	5YR3/4	SC	2msbk	sh	fr	ms∓		
Bw ₃	37-59	GS	5YR3/4	С	3msbk	h	fr	vs&vp		-
Bw ₄	59-80	GS	5YR4/4	С	3msbk	h	fr	vs&vp		
Bw ₅	80-97	AS	5YR4/6	SC	2msbk	sh	fr	ms∓		
Bw ₆	97-118	CS	5YR5/6	SC	2msbk	sh	fr	ss&sp		
Cr				Wea	thered parent	materia	1			
Pedon 7										
Ap	0-13	CS	5YR4/4	SL	1msbk	fr	fr	ss&sp		
Bt ₁	13-32	CW	2.5YR3/6	SC	2msbk	sh	fr	ms∓		
Bt ₂	32-53	CS	2.5YR3/4	SC	2msbk	sh	fr	ms∓		-
Bt ₃	53-65	CS	2.5YR3/4	SC	1msbk	sh	fr	ms∓		
Bt ₄	65-87	CS	2.5YR3/4	SC	2msbk	sh	fr	ms∓		
Cr				Wea	thered parent	materia	1			
Pedon 8										

International Journal of Chemical Studies

Ap	0-11	CS	5YR4/6	SL	1msbk	sh	fr	ss&sp	
Bt_1	11-33	GS	5YR3/4	SCL	1msbk	sh	fr	ss&sp	
Bt ₂	33-47	GW	5YR3/4	SCL	2msbk	sh	fr	ms∓	-
Bt ₃	47-63	CS	5YR3/4	SCL	2msbk	sh	fr	ms∓	
Bt ₄	63-77	CS	5YR4/6	SCL	1msbk	sh	fr	ms∓	
Cr				Wea	thered parent	material	1		
Pedon 9									
Ар	0-13	CS	5YR4/6	SL	1msbk	fr	fr	ss&sp	
Bt ₁	13-31	CS	5YR4/6	SC	2msbk	fr	fr	ss&sp	
Bt ₂	31-42	GW	5YR3/4	SC	2msbk	fr	fr	ms∓	-
Bt ₃	42-56	CS	5YR3/4	SC	2msbk	fr	fr	ms∓	
Cr				Wea	thered parent	material	1		
Pedon 10									
Ap	0-13	CS	7.5YR3/4	SL	1msbk	fr	fr	ss&sp	
Bt ₁	13-26	CS	7.5YR3/4	SL	1msbk	sh	fr	ss&sp	
Bt ₂	26-42	GS	7.5YR4/2	SC	1msbk	fr	fr	ms∓	-
Bt ₃	42-71	GS	10 YR3/4	SC	1msbk	fr	fr	ms∓	
Bt ₄	71-94	GS	10 YR5/3	SCL	1msbk	fr	fr	ms∓	
Cr				Wea	thered parent	materia	l		

⁽Note: Structure: 0-structure less, 1-weak, 2- moderate, f- fine, m-medium, sbk-sub-angular blocky Consistence: l-loose, sh-slightly hard, h-hard fr-friable, ss- slightly sticky, sp- slightly plastic)

Physical properties

The data on particle size distribution in different horizons of soil pedons revealed that the texture varied from sandy loam to clay in majority of the horizons. In almost all the pedons, surface horizons exhibited higher sand content than the sub surface horizons. This might be due to the removal of finer fractions from the upper layers by clay eluviations and surface runoff. Results were in accordance with Dasog and Patil (2011)^[4]. The silt content did not fallow a regular trend in pedons of watershed area. Such irregular trend in silt content material (Denis *et al.*, 2015)^[5]. The clay content increased with the depth in the majority of the pedons. Increase in clay content with depth might be attributed to the illuviation process occurring during soil development, which also resulted in higher sand fractions in red soil pedons. Similar

results were reported by Pulakeshi *et al.* (2014) ^[11]. The bulk density ranged from 1.18 to 1.79 mg m⁻³ in all the pedon samples followed a common pattern of increasing with increasing in depth. This might be due to lower total porosity and organic matter content in red soil pedons. The lower bulk density in the surface (AP) horizon was attributed to higher organic matter content, better and stable aggregation, and increase in the porosity of the soil. The increased bulk density with depth was attributed to increased compaction due to a load of overlying horizons (Nagendra and Patil 2015) ^[9]. The bulk density increased with depth due to rapid decomposition, mineralization and presence of low organic matter. The field capacity, permanent wilting point and available water did not follow a definite trend throughout the depth of all the pedons (Table 2).

Horizon	Depth (cm)	TextureParticle size distribution (%)Moisture retention capacity (%)							BD (mg m ⁻³)
			Sand	Silt	Clay	FC	PWP	AW	
Pedon 1									
Ap	0-13	Scl	60.75	11.75	27.50	19.94	9.02	10.92	1.25
\mathbf{Bt}_1	13-34	Sc	49.25	13.25	37.50	19.87	4.14	15.73	1.31
Bt_2	34-47	Sc	53.50	10.45	36.05	23.53	9.09	14.44	1.34
Bt ₃	47-64	Sc	51.25	12.50	36.25	16.57	5.26	11.31	1.38
Cr				Wea	thered parent	t material			
Pedon 2									
Ар	0-14	S1	72.40	10.21	17.60	19.17	7.23	11.94	1.26
Bt_1	14-31	Scl	52.00	16.07	32.00	19.31	8.67	10.64	1.27
Bt ₂	31-43	Scl	51.50	16.00	32.50	20.25	3.61	16.64	1.36
Bt ₃	43-52	Scl	50.53	14.04	35.50	18.85	7.39	11.45	1.42
Cr				Wea	thered parent	t material			
Pedon 3									
Ap	0-15	С	48.03	22.31	29.66	38.49	5.00	33.49	1.37
$\mathbf{B}\mathbf{w}_1$	15-38	С	40.36	28.00	31.64	34.02	6.67	27.35	1.31
Bw ₂	38-52	Sc	38.36	29.60	32.04	20.44	5.88	14.56	1.32
Bw ₃	52-76	Scl	37.59	30.01	32.44	15.51	3.45	12.06	1.34
Bw4	76-96	S1	36.39	30.26	33.35	15.41	5.56	10.86	1.35
Bw5	96-109	S1	33.02	31.29	35.69	17.86	5.26	12.60	1.34
Bw ₆	109-140	С	30.38	31.60	38.02	16.49	4.13	10.49	1.28
Cr				Wea	thered parent	t material			
Pedon 4									
Ар	0-10	S1	64.00	18.75	17.25	20.06	7.13	12.93	1.36
Bw ₁	10-23	Scl	54.75	14.25	31.00	28.17	8.33	19.83	1.37

Table 2: Physical properties of the soil pedons of Sigehadlu micro watershed, Kadur taluk of Chikkamagaluru district, Karnataka

International Journal of Chemical Studies

Bw ₂	23-41	Sc	55.00	10.00	35.00	15.18	7.14	8.04	1.39					
Cr		Weathered parent material												
Pedon 5														
Ap	0-12	Scl	55.10	14.34	31.23	23.14	1.66	22.49	1.42					
Bt ₁	12-28	Sc	54.24	13.23	33.29	23.08	3.07	20.01	1.33					
Bt ₂	28-45	Sc	49.32	15.14	34.57	20.00	6.25	23.75	1.36					
Bt ₃	45-64	Sc	35.18	12.27	36.14	12.16	2.66	22.49	1.29					
Cr		Weathered parent material												

(Note: FC-Field capacity, PWP-Permanent wilting point, AW-Available water BD-Bulk density)

Continued

Horizon	Depth (cm)	Texture	Particl	e size distril	bution (%)	Moisture ret	ention capa	city (%)	BD (mg m ⁻³)					
			Sand	Silt	Clay	FC	PWP	AW						
Pedon 6					•									
Ар	0-10	Sl	54.50	16.00	29.50	20.38	8.34	12.04	1.28					
$\mathbf{B}\mathbf{w}_1$	10-19	Scl	51.00	15.00	34.00	21.72	9.45	12.27	1.28					
Bw ₂	19-37	Sc	42.00	17.00	41.00	22.82	6.67	16.15	1.29					
Bw3	37-59	C	31.00	26.60	42.40	32.37	11.40	20.97	1.32					
Bw4	59-80	C	30.00	23.00	47.00	33.26	11.11	22.14	1.33					
Bw5	80-97	Sc	35.00	20.00	45.00	23.66	8.33	15.33	1.35					
Bw ₆	97-118	Sc	42.00	21.00	37.00	24.19	8.22	14.25	1.38					
Cr		Weathered parent material												
Pedon 7														
Ap	0-13	Sl	60.15	16.50	23.00	20.83	9.96	10.86	1.29					
Bt_1	13-32	Sc	50.00	12.00	38.00	19.47	7.88	11.59	1.28					
Bt_2	32-53	Sc	46.10	15.00	37.90	17.17	2.49	15.68	1.31					
Bt ₃	53-65	Sc	46.00	15.00	39.00	15.15	4.40	10.75	1.33					
Bt ₄	65-87	Sc	40.22	18.00	42.00	12.50	2.80	10.70	1.39					
Cr				We	eathered parent	material								
Pedon 8														
Ap	0-11	Sl	70.00	10.00	18.00	19.67	8.46	11.20	1.31					
Bt_1	11-33	Scl	60.00	12.00	31.00	20.92	4.48	16.44	1.33					
Bt_2	33-47	Scl	52.00	13.00	35.00	22.08	5.79	16.29	1.53					
Bt ₃	47-63	Scl	50.00	12.00	38.00	22.30	5.31	16.99	1.59					
Bt ₄	63-77	Scl	54.00	16.00	30.00	20.20	5.26	14.93	1.75					
Cr				We	eathered parent	material								
Pedon 9														
Ap	0-13	Sl	56.00	21.00	23.00	18.75	6.27	14.75	1.08					
\mathbf{Bt}_1	13-31	Sc	47.30	16.30	36.40	27.39	13.97	13.41	1.27					
Bt_2	31-42	Sc	45.15	17.05	37.80	22.55	12.14	10.41	1.34					
Bt ₃	43-56	Sc	44.00	18.00	38.00	21.49	4.00	15.22	1.41					
Cr				We	eathered parent	material								
Pedon 10														
Ар	0-13	Sl	52.00	27.00	21.00	17.04	2.06	14.98	1.18					
Bt ₁	13-26	Sl	51.00	20.00	29.00	16.63	3.69	12.94	1.23					
Bt ₂	26-42	Sc	45.60	17.50	36.90	20.88	5.88	15.00	1.25					
Bt ₃	42-71	Sc	44.50	14.60	40.90	20.38	6.67	13.72	1.37					
Bt ₄	71-94	Scl	65.00	13.00	30.00	17.12	5.77	11.35	1.41					
Cr				We	athered parent	material								

Chemical properties

In general, the pH (soil reaction) of soil pedons ranged from slightly acidic to moderately alkaline. Irrespective of pedons, the soil pH increased with depth pH of the soil pedons were varied from 5.83 to 7.98. This might be due leaching and accumulation of bases in the lower horizons. The electrical conductivity (EC) ranged from 0.10 to 0.87 dS m⁻¹, indicating that soils of the micro-watershed were non-saline. Pillai and Natarajan (2004) also reported similar low EC values indicating the non-saline nature of soils of Garakahalli watershed. The EC also increased with depth within a pedon. This was attributed to leaching of salts from surface horizon and subsequent accumulation in the lower horizons mediated by percolating rain-water (Table 3).

The soil organic carbon content was low to medium and it was ranged from 1.54 to 7.84 g kg⁻¹, throughout the profile soil organic carbon decreasing trends was observed with

depth. The overall low organic carbon status of the soils of the micro-watershed was apparently due to the prevailing high temperature which caused rapid oxidation of organic matter coupled with low biomass production. These observations were in line with the findings of Basavaraju *et al.* (2005). In general, the surface soil horizon showed higher organic carbon content than underlying layers which decreased with increasing depth in all soil pedons. The higher organic carbon content of surface soil as compared to sub-surface soils in most of the pedons was obviously due to high amount of litter and crop residues left on the surface and also manures application. These results were in accordance with Vinay (2007) ^[20] (Table 3).

The available nitrogen content was low to medium and it was ranged from ranged from 30.26 to 338.69 kg ha⁻¹. However, available nitrogen was found high in surface horizon and decreased with soil depth which might be due to decreasing

trend of organic carbon with depth and the supplementation of depleted nitrogen by crops through the external addition of fertilizers to the surface horizons during crop cultivation (Rehman *et al.*, 2017)^[13]. The available phosphorus content was low to medium it was ranged from 11.05 to 59.54 kg ha⁻¹. The higher P in surface horizons was possibly due to the restriction of crop cultivation to the rhizosphere and supplementing the depleted phosphorous through fertilizers (Thangasamy *et al.*, 2005)^[19]. The available phosphorus content decreased with the depth this might be attributed to its higher removal than replenishment in sub soils as well as due to higher phosphorous fixation capacity, as discussed by Sathisha and Badrinath, (1994^[14] (Table 3).

The available potassium content was low to high it was ranged from 340.84 to 101.39 kg ha⁻¹. The highest available K content was noticed in the surface horizons and showed more or less decreasing trend with depth. It could be attributed to more intense weathering, the release of labile K from organic residues, application of K fertilizers and upward translocation

of K from lower depths along with the capillary rise of ground water (Thangasamy et al., 2005)^[19]. The available sulphur content was low to high it was ranged from 7.45 to 24.63 kg ha⁻¹. It decreased with increasing depth. The high sulphur content in surface horizons may be due to higher organic matter and in lower layers attributed to the weathering intensity of sulphate minerals in soils (Rehman et al, 2017) ^[13]. The free calcium carbonate content of soils ranged from 1.15 to 9.84 per cent in general, the free calcium carbonate content increased with increasing depth. Similar results were reported by Barade and Gowaikar (1965) and Sehgal et al. (1968). Under semi-arid conditions, calcium and magnesium get precipitated as their carbonates and bicarbonates and move to lower layers with percolating water thus enriching lower horizons. This process was reported to cause an apparent enhancement in sodium concentration and subsequent sodification of soils (Kanwar and Kanwar, 1968) ^[6] (Table 3).

Horizon	Depth (cm)	pН	E.C (dS m ⁻¹)	O.C (g kg ⁻¹)	Availab	le macro n (kg ha ⁻¹)	utrients	Available S (mg kg ⁻¹)	Free CaCO ₃ (%)
	(011)		(42 11)	(88)	N	P_2O_5	K ₂ O	(
Pedon 1				I.	I.		. –		L.
Ар	0-13	7.58	0.31	4.84	232.06	48.32	179.56	16.18	2.25
Bt ₁	13-34	7.64	0.36	4.56	194.43	38.93	161.68	14.45	2.39
Bt ₂	34-47	7.69	0.42	3.91	163.07	19.47	151.20	11.95	2.68
Bt ₃	47-64	7.84	0.54	2.10	121.54	16.38	140.61	8.93	3.25
Cr				•	Weathered	l parent ma	terial		
Pedon 2									
Ар	0-14	6.32	0.10	6.51	150.53	59.54	300.52	23.83	1.55
Bt ₁	14-31	6.35	0.13	6.28	137.98	50.38	251.19	15.63	2.35
Bt ₂	31-43	6.56	0.18	6.24	137.98	18.32	237.75	16.18	2.68
Bt ₃	43-52	6.69	0.21	5.44	131.08	13.74	193.00	15.05	2.93
Cr					Weathered	l parent ma	terial		
Pedon 3									
Ар	0-15	7.51	0.14	6.32	257.15	57.25	326.05	23.63	1.30
Bw ₁	15-38	7.58	0.16	5.10	137.98	54.96	273.64	20.30	1.89
Bw ₂	38-52	7.66	0.16	3.98	134.22	48.09	219.88	18.13	2.19
Bw ₃	52-76	7.52	0.15	3.67	99.10	22.90	151.33	17.23	2.93
Bw4	76-96	7.64	0.16	2.13	70.25	18.32	139.24	14.45	3.30
Bw5	96-109	7.82	0.16	1.32	36.38	14.16	139.24	11.95	3.32
Bw ₆	109-140	7.96	0.19	1.30	30.26	11.08	120.20	8.66	3.45
Cr					Weathered	l parent ma	terial		
Pedon 4									
Ap	0-10	7.53	0.13	5.46	288.51	50.38	231.84	16.88	4.14
Bt ₁	10-23	7.56	0.18	5.43	228.93	43.51	141.93	13.70	5.19
Bt ₂	23-41	7.59	0.24	3.47	198.07	38.32	128.92	11.95	8.93
Cr					Weathered	l parent ma	terial		
Pedon 5									
Ap	0-12	7.31	0.31	6.62	263.42	48.32	191.39	16.18	2.25
Bt ₁	12-28	7.50	0.39	6.34	197.57	38.93	147.97	14.45	3.39
Bt ₂	28-45	7.64	0.46	2.49	163.42	18.39	103.49	13.21	3.96
Bt ₃	45-64	7.88	0.87	1.84	135.48	19.47	101.39	11.95	4.12
Cr					Weathered	l parent ma	terial		

Table 3: Chemical properties of the soil pedons of Sigehadlu micro-watershed, Kadur taluk of Chikkamagaluru district, Karnataka

Continued

Horizon	Depth (cm)	pН	E.C (dS m ⁻¹)	O.C (g kg ⁻¹)	Available macro nutrients (kg ha ⁻¹)			Available S (mg kg ⁻¹)	Free CaCO ₃ (%)
					N P2O5 K2O				
Pedon 6									
Ap	0-10	7.12	0.11	7.50	338.69	44.96	340.84	24.63	3.98
$\mathbf{B}\mathbf{w}_1$	10-19	7.14	0.13	5.75	313.60	27.48	300.52	22.40	4.69
Bw ₂	19-37	7.26	0.16	5.43	133.59	25.19	260.20	18.95	5.90
Bw ₃	37-59	7.34	0.17	3.97	125.44	22.90	128.49	17.23	5.93

-			0.4.4	2.00	00.40	10.1.4	100.57							
Bw4	59-80	7.52	0.16	3.08	99.10	19.16	122.57	14.45	4.75					
Bw5	80-97	7.86	0.18	1.58	73.38	17.87	115.05	10.30	4.96					
Bw ₆	97-118	7.91	0.21	1.54	55.62	12.05	110.06	8.65	6.39					
Cr		Weathered parent material												
Pedon 7				-		1	1							
Ap	0-13	6.61	0.10	6.79	250.88	27.48	179.56	21.90	3.28					
Bt ₁	13-32	6.87	0.25	6.64	169.34	26.56	156.04	19.80	4.96					
Bt ₂	32-53	6.89	0.31	5.15	112.90	25.19	119.75	15.95	5.93					
Bt ₃	53-65	6.92	0.42	4.24	92.76	18.78	109.42	15.58	7.08					
Bt ₄	65-87	6.98	0.70	1.56	84.60	16.95	101.93	12.25	7.18					
Cr		Weathered parent material												
Pedon 8														
Ap	0-11	5.83	0.09	6.30	319.87	42.00	313.96	16.43	1.15					
Bt ₁	11-33	5.99	0.11	6.09	131.71	32.15	260.20	11.40	1.29					
Bt ₂	33-47	6.66	0.15	5.45	131.71	21.83	245.28	9.73	1.94					
Bt ₃	47-63	6.85	0.19	5.43	74.01	17.86	166.12	7.80	2.19					
Bt ₄	63-77	7.12	0.24	3.61	50.18	17.48	139.24	7.45	2.25					
Cr					Weathered	l parent 1	material							
Pedon 9														
Ар	0-13	6.31	0.14	7.21	200.70	22.90	233.72	17.80	4.55					
Bt ₁	13-31	7.20	0.18	3.96	194.43	20.61	174.18	13.48	5.00					
Bt ₂	31-42	7.91	0.21	3.30	169.34	17.40	150.93	10.00	6.63					
Bt ₃	42-56	7.98	0.28	2.45	131.54	16.03	138.03	8.90	8.07					
Cr					Weathered	parent	material							
Pedon 10														
Ар	0-13	7.26	0.13	7.84	296.70	52.67	263.29	15.75	5.94					
Bt ₁	13-26	7.48	0.26	7.28	214.43	43.51	191.25	15.85	6.14					
Bt ₂	26-42	7.52	0.27	7.29	189.34	32.06	146.23	10.93	7.35					
Bt ₃	42-71	7.56	0.31	5.70	152.17	22.90	111.42	10.28	9.84					
Bt ₄	71-94	7.77	0.34	4.55	110.03	18.03	104.40	9.45	4.71					

Conclusion

The study of morphological, physical and physico-chemical analysis of soil samples revealed that the soils of Sigehadlu micro watershed were shallow to deep. The colour of the soils in soil pedons varied from dark reddish brown to very dark gray. The texture of soils was found to vary from sandy loam to clay. The structure was moderate to medium sub-angular blocky to moderate medium angular blocky. The consistency of soil pedons varied from slightly hard to very hard when dry, friable to the firm when moist, slightly sticky to very sticky and slightly plastic to very plastic when wet. The soils of Sigehadlu micro watershed were acidic to moderately alkaline in soil reaction, non-saline and low in organic carbon content. The study shows the influence of topography in controlling the pedogenic processes and its physico-chemical characteristics of Sigehadlu soils that will certainly help in taking effective measures for sustainable management of the soil for suitable land use.

Acknowledgement

The authors sincerely acknowledge Sujala-III Project GoK, Shivamogga for extending the facilities to carry out the research.

References

- 1. Arun Kumar V, Natarajan S, Sivasamy R. Characterization and classification of soils of lower Palar-Manimuthar watershed of Tamil Nadu. Agropedology, 2002; 12:97-103.
- Barade NK, Gowaikar AS. Studies on soils of semi-arid regions of North Gujarat. J Indian Soc. Soil Sci. 1965; 13:43-52.
- 3. Basava Raju D, Naidu MVS, Ramavatharam N, Venkaiah K, Rama Rao G, Reddy KS. Characterization, classification and evaluation of soils in Chandragiri

mandal of Chittoor district, Andhra Pradesh. Agropedology. 2005; 15:55-62.

- 4. Dasog GS, Patil PL. Genesis and classification of black, red and lateritic soils of north Karnataka. In: *soil science research in North Karnataka*, Dharwad Chapter of ISSS (Ed.s), 76th annual convention of ISSS, 2011, 1-10.
- Denis MKA, Patil PL. Mapping of biophysical constraints of soils in semi-arid northern transition zone of India by GIS techniques. American-Eurasian J. Agric. Environ. Sci., 2015; 15(1):53-62.
- 6. Kanwar JS, Kanwar BS. Quality of irrigation water. Translations of 19th Int. Cong. Soil Sci. 1968; 1:391-404.
- Madhan Mohan M. Characterization and classification of soils and land suitability of a micro-watershed in Hangal taluk. M. Sc. (Agri.) Thesis, Univ. Agric. Sci., Dharwad, Karnataka (India), 2008.
- Madhu BM. Characterization and evaluation of soil resources of Patapur micro-watershed for sustainable land use planning. M. Sc. (Agri.) Thesis, Univ. Agric. Sci., Raichur, Karnataka (India), 2012.
- Nagendra BR, Patil PL. Characterization and classification of soil resources of Shirol West-1 microwatershed. Karnataka J Agric. Sci. 2015; 28(4):504-509.
- Pillai MY, Natarajan A. Characterization and classification of dominant soils of parts of Garakahalli watershed using remote sensing technique. Mysore J Agric. Sci. 2004; 38:193-200.
- 11. Pulakeshi HBP, Patil PL, Dasog GS. Characterization and classification of soil resources derived from chlorite schist in northern transition zone of Karnataka. Karnataka J Agric. Sci. 2014; 27(1):14-21.
- Ram Prakash T, Seshagiri Rao M. Characterization and classification of some soils in a part of Krishna district, Andhra Pradesh. The Andhra Agric. J. 2002; 49:228-236.

- 13. Rehman NZ, Ram D, Wani JA, Maqbool M. Vertical spread of soil properties in different topo-sequenced arable lands of Pulwama, Kashmir. Res. J Agric. Sci., 2017; 8(2):445-449.
- Sathisha C, Badrinath MS. Characterization of soils of Western Ghats in Dakshina Kannada district, Karnataka. Agropedology. 1994; 4:45-48.
- 15. Sehgal JL. *Pedology Concepts and Application*, Kalyani Publishers, New Delhi, India, 1968.
- Shyampura RL, Giri JD, Krishnendudas and Singh, S. K., 1994, Soil physiographic relationship on a transect in southern Rajasthan. J Indian Soc. Soil Sci. 1968; 42(4):622-625.
- 17. Singh IS, Agarwal HP. Characterization, genesis and classification of rice soils of eastern region of Varanasi, Uttar Pradesh. Agropedology. 2003; 15(1):29-38.
- 18. Sitanggang M, Rao YS, Ahmed N, Mahapatra SK. Characterization and classification of soils in watershed area of Shikohpur, Gurgaon district, Haryana. J Indian Soc. Soil Sci. 2006; 54:106-110.
- Thangasamy A, Naidu MVS, Ramavatharam N, Raghava Reddy C. Characterization, classification and evaluation of soil resources in Sivagiri micro-watershed of Chittoor district in Andhra Pradesh for sustainable land use planning. J Indian Soc. Soil Sci. 2005; 53:11-21.
- 20. Vinay L. Characterization and classification of soil resource of Bhanapur micro-watershed (Koppal district) for land evaluation. *M.Sc. (Agri.) Thesis*, Univ. Agric. Sci., Dharwad, Karnataka (India), 2007.
- 21. Yadav JSP. Managing soil health for sustained high productivity. J Indian Soc. Soil Sci. 2003; 51:448-465.