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Abstract 

Soil health refers to the ecological equilibrium and the functionality of a soil and its capacity to maintain 

a well balanced ecosystem with high biodiversity above and below surface, and productivity. However, 

feeding seven billion people with environmental sustainability is a challenge for the next generations. 

Good soil physical health is essential for optimum sustained crop production. Soil tillage has a direct 

influence on the soil physical health. Tillage exerts impact on the soil purposely to produce crop and 

consequently affects the environment. An appropriate tillage system needs to be practiced so as to take 

care of the soil health, plant growth and the environment simultaneously. Therefore, to achieve 

sustainable food production with minimal impact on the soil and the atmosphere, conservation tillage 

practices become more important now than ever ensuring sustainable food production and maintaining 

environmental integrity. This paper aims to review the work done on maintaining and restoring soil 

health, an overview of the soil health indicators and above all the impact of tillage and its different types 

in different agro-ecological regions so as to understand its influence from the perspectives of the soil, the 

crop and the environment. 
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Introduction 

The concerns on the sustainability of agricultural systems have increased recently because the 

agricultural edges have already expanded near to the maximum all over the world (Cardoso et 

al., 2013) [15]. Feeding seven billion people with environmental sustainability is a challenge for 

the next generations. Sustainable agriculture aims at meeting the needs of the present without 

compromising the productive potential for the next generations. Rational soil use practices 

must allow economically and environmentally sustainable yields, which will only be reached 

with the maintenance or recovery of the soil health. The interest in soil health can be traced 

back to the ancient Roman civilization. This concept of soil science dates back to the 1970s. 

The Soil Science Society of America (SSSA), after much discussion about the subject, came 

with a broad definition: 

"The ability of a specific type of soil to function within natural or managed ecosystem 

boundaries, to sustain plant and animal productivity, maintain or improve air quality and water 

to support human health and livable" (Karlen et al., 1997) [37]. 

Soil function describes what the soil does. Soil functions are: (1) Sustaining biological activity, 

diversity, and productivity; (2) Regulating and partitioning water and solute flow; (3) Filtering 

and buffering, degrading, immobilizing, and detoxifying organic and inorganic materials, 

including industrial and municipal by-products and atmospheric deposition;(4) Storing and 

cycling nutrients and other elements within the earth’s biosphere; and (5) providing support of 

socioeconomic structures and protection for archeological treasures associated with human 

habitation (Seybold et al., 1998) [69].  

Subsequently the soil health and soil quality terms are used interchangeably. Although it is 

important to distinguish that, soil quality is related to soil function (Letey et al., 2003) [45], 

whereas soil health presents the soil as a finite non-renewable and dynamic living resource. 

The concept of soil quality emerged in the literature in the early 1990s, and the first official 

application of the term was approved by the Soil Science Society of America Ad Hoc 

Committee on Soil Quality (S- 581) and discussed by Karlen et al. (1997) [37]. However, the 

term soil health is most preferred by some researchers because it describes the soil as a living  
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entity with a dynamic system. Because of the numerous 

alternative uses of soil as a living resource, the meaning of the 

terms soil health and soil quality depend on the defined 

purpose such as for agricultural use (Andrews and Carroll, 

2001) [6]. In agriculture, we mainly pay attention to plant and 

animal productivity as these would be of greatest importance 

in cultivated soils as opposed to urban soils (Idowu et al., 

2007) [53]. Soil health in a broader concept, identifies the 

functionality of a soil to promote environmental quality, 

preserve plant and animal health and sustain biological 

productivity, while the term soil quality is associated with the 

fitness of the soil for a specific purpose (Doran and Zeiss, 

2000) [25].  

 

Effect of tillage on soil physical indicators 

The physical indicators are related to the organization of the 

particles and pores, reflecting effects on root growth, speed of 

plant emergence, compaction and water infiltration. Since soil 

physical properties influence rooting depth and volume, they 

also affect nutrient availability and plant growth. Physical 

properties provide information related to the soil’s ability to 

withstand physical forces associated with splashing raindrops 

or rapid water entry into soil that contribute to aggregate 

breakdown, soil dispersion, and erosion. Near-surface soil 

physical properties can be altered by human manipulation; 

however, many physical properties are determined by genetic 

soil properties. Research has indicated that physical properties 

are sensitive to tillage and other disturbances (Busscher et al., 

2006). Tillage has both advantageous and unfavorable effects 

on soil physico-chemical properties and on climate change 

(Alam et al., 2016) [3]. Extensive tillage practices may lead to 

breakdown of soil organic matter (SOM) (Alam et al., 2014) 

[2] and undesirable change in soil physical properties 

(Busscher et al., 2004) [14]. Soil physical properties such as 

texture, bulk density, soil depth, hydraulic conductivity, 

aggregate size distribution, water infiltration rate and water 

holding capacity can serve as indicators of healthy soils. The 

roles of several physical indicators are influenced by other 

parameters or inherent properties of the soil. Physical 

indicators commonly used to assess soil function and quality 

includes: 

 

Bulk density 
A soil’s bulk density is defined as “the mass of dry soil per 

unit bulk volume” (Soil Science Society of America, 2001). 

The bulk density (ρb) can change relatively rapidly; therefore 

bulk density can be viewed as ‘red flag’ indicator of overall 

soil health (Brady and Weil, 2002) [13]. Bulk density is 

routinely assessed in agricultural systems to characterize the 

state of soil compactness in response to land use and 

management. It is considered as a useful indicator for the 

assessment of soil health with respect to soil functions such as 

aeration and infiltration (e.g. Pattison et al., 2008; Reynolds et 

al., 2009) [58, 63]. 

The effect of tillage and residue management on soil bulk 

density is mainly confined to the topsoil (plough layer). In 

deeper soil layers, soil bulk density is generally similar in 

zero and conventional tillage (Haynes et al., 2008) [30]. A 

plough pan may be formed by tillage immediately underneath 

the tilled soil, causing higher bulk density in this horizon in 

tilled situations (Dolan et al., 2006) [24]. Abu-Hamdeh (2004) 

studied the effect of tillage treatments (moldboard ploughing 

MB; chisel ploughing CS; and disk ploughing DP) for 

comparison of axle load on a clay loam soil. He reported that 

the dry bulk density from 0 to 20 cm was affected by the 

tillage treatments and from 20 to 40 cm by axle load. The MB 

treatment caused the maximum percentage increase of dry 

bulk density at all depths. Al-Kaisi et al., (2005) [4] used wide 

range of tillage systems in the Corn-Belt in the United States 

soil and found that bulk density values of no-tillage (NT) and 

chisel plow (CP) treatments were not significantly different 

after 7 years. Osunbitan et al. (2005) [57] observed greater bulk 

density in no-till system in the 5 to 10 cm soil depth. In 

contrast, other studies reported greater to similar BD in 

conventional tillage compared to no tillage (Logsdon and 

Cambardella, 2000; Unger, 1996) [48, 77].  

Blanco-Canqui and Lal, (2006) [11] measured bulk density in 

zero tillage plots that had been uncropped and receiving three 

levels of wheat straw mulch (0, 8, and 16 Mg ha-1 yr-1) for 10 

consecutive years on a silt loam in central Ohio. Straw 

management had a large impact on bulk density in the 0-10 

cm depth. Differences in bulk density among the treatments 

were not significant in the 10-20 cm depth. The bulk density 

under the high-mulch treatment was 58% lower and that 

under the low-mulch treatment was 19% lower than the bulk 

density under the unmulched treatment for the 0-3 cm depth. 

In the 3-10 cm depth, bulk density under the high-mulch 

treatment was only 36% lower and that under the low-mulch 

treatment was 9% lower than under the control. These results 

are similar to those reported by Lal (2000) [42], who observed 

that annual application of 16 Mg ha-1 of rice (Oryza sativa L.) 

straw for 3 years decreased bulk density from 1.20 to 0.98 Mg 

m-3 in the 0-5 cm layer on a sandy loam. Treatments of 

conventional tillage, chisel tillage and zero tillage, all with 

either residue returned or harvested, were imposed on a silt 

loam soil with a maize-soyabean rotation in Minnesota (Dolan 

et al., 2006) [24]. 

 

Soil aggregate 

It is considered a useful soil health indicator since it is 

involved in maintaining important ecosystem functions in soil 

including organic carbon (C) accumulation, infiltration 

capacity, movement and storage of water, and root and 

microbial community activity; it can also be used to measure 

soil resistance to erosion and management changes (Moebius 

et al., 2007; Rimal and Lal, 2009) [53, 66]. Because of its 

association with the storage of soil organic carbon (SOC) and 

water, its measurement can be useful to guide for quantifying 

effect of tillage on soil health, especially in areas that are 

likely to experience high and intense rainfall and 

consequently increased erosion events.  

Soil tillage conventional system based on annual ploughing 

had the effect of reducing hydro stability of structural 

aggregates, increasing vulnerability to degradation by soil 

compaction, erosion etc. (Cerbari, 2011) [17]. Salinas-Garcia et 

al. (1997) [68] reported that, in fallow and conservation tillage, 

residues accumulate at the surface where the litter 

decomposition rate is slowed. This is due to drier conditions 

and reduced contact between soil microorganisms and litter. 

Stable aggregates can better withstand factors such as erosion 

and compaction and facilitate water movement. Pinheiro et al. 

(2004) [61] reported the reduction of large aggregates in the 

tilled soils than untilled and attributed it to the physical 

disturbance of soil. The more systematic soil aggregate 

classes observed in conventional tillage were an indication to 

loss of soil structure. This was attributed to mechanical 

disruption and exposure of soil organic matter previously 

preserved to oxidation (Tisdall and Oades, 1982) [75]. It also 

pulverised soil aggregates into microaggregates hence a 

reduction in amount of macroaggregates (Tisdall and Oades, 
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1982) [75]. Elliot (1986) reported that, the primary source of 

organic matter lost during cultivation is the organic matter 

binding microaggregates into macroaggregates. 

Jacobs et al. (2009) [34] found that minimum tillage (MT), 

compared with CT, did not only improve aggregate stability 

but also increased the concentrations of SOC and N within the 

aggregates in the upper 5–8 cm soil depth after 37–40 years of 

tillage treatments. Ashagrie et al. (2007) [8] found that 26 

years of continuous cultivation reduced water stable 

aggregates relative to natural forest. Most of the differences 

were attributed to tillage, type of organic matter, and 

mycorrhizal hyphae. The same study found that most 

differences in management were found in macro-aggregates 

rather than micro-aggregates. Microaggregates are more 

stable and less affected by soil use and management. In addi-

tion, they are responsible for long-term stabilization of soil 

organic carbon (Six et al., 2004) [73]. On the other hand, 

macroaggregates are more susceptible to the soil use and 

management, and are especially related to the dynamics of the 

soil organic matter (Six et al., 2004) [73]. The dispersion of 

soil aggregates under intensive management is usually less 

severe than in soils with more inputs of organic matter, which 

results in greater microbial activity (Qin et al., 2010) [62]. On 

the other hand, the decrease of soil organic matter followed 

by dispersion of aggregates reduces the macro porosity and 

the soil oxygenation, and impairs the performance of 

decomposing microbiota and their access to the organic 

material (Chodak and Niklinska, 2010) [21]. Soil aggregates 

affect aeration, permeability, nutrient cycling, and serve as 

refuge for microorganisms and soil fauna in microsites. By 

turn, the soil biota (microorganisms, fauna, and plants) affects 

the soil aggregates.  

 

Water holding capacity 

The water holding capacity of a soil is the volume of water 

that can be stored in a form accessible or available for plants 

use. The major management practices that influence water-

holding capacity are tillage and crop residue management. 

Soils that are highly tilled tend to lose water-holding capacity. 

Water use efficiency has also been reported to be greater in 

soils under reduced tillage (McVay et al., 2006) [51] and NT 

(Li et al., 2005) [46] systems as compared with CT. Su et al. 

(2007) found that the soil water storage quantity using ZT was 

25% higher than CT during a six year study while WUE was 

significantly higher in ZT than CT and RT. Kargas et al. 

(2012) [36] observed that untilled plots retain more water than 

tilled plots. In comparison with conventional ploughing, 

Pagliai et al. (2004) [61] reported that minimum tillage 

improved the soil pore system by increasing the storage pores 

(0.5–50 mm) and the amount of the elongated transmission 

pores (50–500 mm). They related the higher microporosity in 

minimum tillage soils to an increase of water content in soil 

and consequently, to an increase of available water for plants. 

Higher water holding capacity or moisture content has been 

found in the topsoil (0–10 cm) under NT than after ploughing 

(McVay et al., 2006) [51]. Therefore, to improve soil water 

storage and increase water use efficiency (WUE) most 

researchers have proposed replacement of traditional tillage 

with conservation tillage (Silburn et al., 2007) [72].  

 

Soil porosity  

Soil porosity plays a critical role in the biological productivity 

and hydrology of agricultural soils. Pores are of different size, 

shape and continuity and these characteristics influence the 

infiltration, storage and drainage of water, the movement and 

distribution of gases and the ease of penetration of soil by 

growing roots (Kay and Vanden Bygaart, 2002.) [39]. Tillage 

operation in general increases the total soil porosity by 

increasing the pore size distribution and pores. Allmaras 

(1977) [5] reported that the increase in total porosity by tillage 

is more due to increase in macropores than in microspores. 

Soils need large pores and channels for adequate aeration and 

good drainage. Large pores that can be seen by the human eye 

are known as macropores. Mesopores and micropores are too 

small to be seen by the human eye and are respectively 

responsible for storing plant available water and holding the 

water that is unavailable to plant roots. The movement of air 

through micropores is very slow. For good plant growth, the 

soil needs a balance of macro-, meso-and micro-pores. Soil 

porosity characteristics are closely related to soil physical 

behavior, root penetration and water movement (Sasal et al. 

2006) and differ among tillage systems. Tillage increases the 

total soil porosity by increasing the pore size distribution and 

pores (Linden, 1982).   

 

Hydraulic conductivity: 

The hydraulic conductivity, Ks is an indicator of the soil’s 

ability to transmit the water needed for plants to the root zone, 

as well as drain excess water out of the root zone (Topp et al., 

1997) [76]. Reports on tillage effects on hydraulic conductivity 

are controversial. Some researchers have reported no or 

negative impact of tillage on soil water characteristics (Obi & 

Nnabude 1988; Heard et al. 1988) [56, 31], while others found 

beneficial effects of zero-tillage on soil water retention 

(Blevins et al. 1983; Datiri& Lowery 1991) [12, 23]. Significant 

positive effect of zero-tillage on hydraulic conductivity was 

reported due to the either greater continuity of pores 

(Benjamin 1993) [9] or water flow through a very few large 

pores (Sharratt et al. 2006).  

Reynolds et al. (2009) [63] reported higher Ks for woodland 

than agricultural fields and fallow the trend woodland > no-

tillage > annual tillage. Such a trend is not surprising because 

of the higher macroporosity of the soils of the natural 

woodland than soils under no-tillage or conventional tillage 

system. The second possible reason could be the arrangement 

of macropores, three dimensional infiltration and restrictions 

to flow by the membrane. However, average Ks values did 

not follow the conventional wisdom and were higher for 

fields under conventional tillage than no-tillage in the other 

study in Ohio. This could be due to a number of factors 

including the larger sample size used for determining the Ks 

from no-tillage fields than from fields under annual tillage, 

measurement errors in the field and laboratory while 

collecting and preparing the core samples, timing of tillage 

operations and errors during sample analyses. 

Bhattacharyya et al. (2006) [10] compared the effects of no-

tillage and conventional tillage practices in a four-year study, 

and reported that the hydraulic conductivity values were 

higher in no-tillage than tilled soils. Several researchers have 

found higher hydraulic conductivity under shallow tillage 

than under mouldboard ploughing and attribute it to stable 

macropores (Allmaras et al., 1977; Rizvi et al. 1987; Coote 

and MalcolmMcGovern, 1989) [5, 67, 22]. In shallow tillage 

biopores and cracks in the lower topsoil are not destroyed by 

tillage action. Several researchers also found higher Ks in 

shallow tillage than mouldboard ploughing where they 

explained presence of earthworm channels, and root channels 

as the responsible factors (Allmaras et al., 1977; Rizvi et al., 

1987; Coote and Malcolm-McGovern, 1989) [5, 67, 22]. In 

addition, in shallow tillage crop residues are left close to the 



 

~ 1734 ~ 

International Journal of Chemical Studies 

surface or mixed within only 10-12 cm which could be 

another reason for higher Ks (Lampurlanes and Cantero-

Martínez, 2006) [43]. Furthermore, inversive tillage 

(ploughing) makes the aggregates unstable during wetting 

(Vakali et al., 2011; Riley et al., 2008) that could cause lower 

Ks. However, Ks is extremely variable even between samples 

taken adjacent to each other (Russo and Bresler, 1981; Lauren 

et al., 1988; Mohanty et al., 1994). Thus, although there was a 

tendency for greater Ks in ST than in MP, the values were not 

always statistically different from each other. This is due to 

the variation in size and number of macropores.  

Lampurlanes and Cantero−Martinez (2006) [43] compared 

three tillage systems (subsoil tillage, minimum tillage and no-

tillage) under three field situations (continuous crop, fallow 

and crop after fallow) on two soils and found soil under no-

tillage had lower hydraulic conductivity than under subsoil 

tillage or minimum tillage during 1 of 2 years in continuous 

crop due to a reduction of soil porosity. However, Mahboubi 

et al. (1993) [49] found that no-tillage resulted in higher 

saturated hydraulic conductivity compared with conventional 

tillage after 28 years of tillage on a silt loam soil in Ohio. 

Kahlon et al. (2013) [35] in a long term experiment found 

higher Ks were measured in NT than PT treatments with 

increase in mulch rate from 0 to 16 Mg ha-1. Heard et al., 

(1988) [31] reported that saturated hydraulic conductivity of 

silt clay loam soil was higher when subjected to 10 years of 

tillage than no-tillage in Indiana. They attributed the higher 

hydraulic conductivity of tilled soil to the greater number of 

voids and abundant soil macropores caused by the tillage 

implementation. Iqbal et al., (2005) [32] reported that deep 

tillage increase the Ksat compared to the no tillage.  

 

Conclusion 

The conclusions arising from this paper are derived from the 

premise that soil is the site of a vital range of ecosystem 

functions which provide humans with a range of essential 

services. An integrative approach is essential for assessment 

of soil health. Furthermore, soil health is related to functional 

capacity rather than actual service outputs. As argued above, 

an effective approach appears to be using a set of diagnostic 

tests for soil system performance, chosen to be indicative of 

habitat condition, i.e. physical and chemical, of energetic 

reservoirs and key organisms and community structure. 

Moreover a long-term favorable state of the physical quality 

of the soil arable layer can be created by a permanent flow of 

organic matter in degraded soils and creating a system of 

minimal tillage. 
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