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prediction 
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Abstract 

Proteins form the very basis of life. Proteins regulate a range of activities in all known organisms, from 

replication of the genetic code to carrying oxygen, and are in general responsible for regulating the 

cellular machinery and subsequently, the phenotype of an organism. Proteins complete their task by 

three-dimensional tertiary and quaternary interactions between different substrates such as DNA and 

RNA, and other proteins. Thus knowing the structure of a protein is a prerequisite to gain a thorough 

understanding of the protein's function. 

A major problem in structural bioinformatics is to conclude the three-dimensional (3-D) structure of a 

protein when only the sequence of amino acid residues is known. Predicting the three-dimensional 

structure of a protein that has no templates in the Protein Data Bank is a very hard and sometimes 

virtually intractable task. Over the last years, many computational methods, systems and algorithms have 

been developed with the purpose of solving this difficult problem. Nevertheless, the problem still 

challenges biologists, computer scientists, bioinformaticians, chemists and mathematicians since the 

complexity and high dimensionality of the protein conformational exploration space. Many 

computational methodologies and algorithms have been recommended as a solution to the 3-D Protein 

Structure Prediction (3-D-PSP) problem. 

These approaches can be classified as following:  

(a) First principle methods without any database information 

(b) First principle methods with database information 

(c) Fold recognition and threading methods 

(d) Comparative modelling methods and sequence alignment strategies.  

Deterministic optimization techniques, computational techniques, data mining and machine learning 

approaches are typically used in the construction of computational solutions for the PSP problem. This 

paper reviews the various recent advances in the science of protein structure prediction. 
 

Keywords: science, protein structure, prediction 
 

1. Introduction 

1.1 Introduction to protein Structure and Representation 

From a structural perspective, a protein is an ordered linear chain of building blocks known as 

amino acid residues. Every protein is defined by its unique sequence of amino acids. The 

sequence is very important as it causes the protein to fold into a specific three-dimensional 

shape. Predicting the folded structure of a protein only from its amino acid sequence remains a 

challenging problem in mathematical. The challenge arises due to the combinatorial explosion 

of plausible shapes each of which represent a local minimum of an intricate non-convex 

function of which the global minimum is sought. In nature, proteins characteristically present 

having 50 to 500 amino acid residues. 

In nature there are 20 distinct protein genic amino acids, each one with its own chemical 

properties (including size, charge, polarity, hydrophobicity, i.e. the tendency to avoid water 

packing) (Lehninger et al., 2005) [4]. According to the polarity of the side-chain, amino acids 

differ in their hydrophilic or hydrophobic characters. The importance of the physical proper-

ties of the side-chains comes from the influence they have on the amino acid residues 

interactions in the 3-D structure. The allocations of the hydrophilic and hydrophobic amino 

acids are significant to determine the tertiary structure of the protein polypeptide. 

A peptide is a molecule which is made of two or more amino acid residues bound by a 

chemical bond called the peptide bond. This peptide bond is formed when the carboxyl group 

of one residue reacts with the amino group of the other residue, thereby releasing a water 

molecule (H2 O). Two or more linked amino acid residues are referred to as a peptide and 

larger peptides are generally referred to as polypeptides or proteins. The peptide bond (C-N)  
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has a double bond and is not allowed rotation of the molecule 

around this bond. The rotation is only permitted around the 

bonds N-C˛ and C˛ -C. 

These bonds are known as PHI (φ) and PSI (ψ) angles, 

respectively, and are free to rotate. This freedom is generally 

responsible for the conformation adopted by the polypeptide 

backbone. However, the rotational freedom around the (N-C˛) 

and (C˛ -C) angles is limited by steric hindrance between the 

side chain of the amino acid residue and the peptide 

backbone. As a result, the probable conformation of a given 

polypeptide is quite limited and depends on the amino acid 

chemical properties. 

The peptide bond itself tends to be planar, with two allowed 

states: Trans, ω 180◦ (usually) and cis, ω 0◦ (rarely) (Branden 

and Tooze, 1998) [1]. The sequence of, and ω angles of all 

residues in a protein defines the backbone conformation or 

fold. The angles and can have any value between −180˚ and 

+180˚. However, some combinations are prohibited by steric 

interferences between atoms from the main-chain and atoms 

from the side-chain (two atoms cannot occupy the same 

space). The allowed and prohibited values for the torsion 

angles and are graphically demonstrated by the map of 

Sasisekharan–Ramakrishnan–Ramachandran, or simply 

Ramachandran map (Ramachandran and Sasisekharan, 1968) 

[10]. 

 

1.1 Proteins can be analysed at four levels (Lehninger et 

al., 2005) [4] 

a) Primary structure, 

b) Secondary structure, 

c) Tertiary structure and 

d) Quaternary structure. 

This hierarchy facilitates the description and the 

understanding of proteins. However, it does not aim at 

describing precisely the physical laws that produce protein 

structures; it is an abstraction that aims at making protein 

structure studies more tractable. 

The primary structure simply describes the sequence of amino 

acid residues in a linear order (Lehninger et al., 2005) [4]. Each 

amino acid residue binds to other amino acid residue through 

a peptide bond. The beginning of the primary structure 

corresponds to its N-terminal region and the end of its 

primary structure is the C-terminal region. Proteins are linear 

polymers that can assume several conformations. 

The stable arrangement of amino acid residues of the 

polypeptide forms structural patterns (Lehninger et al., 2005) 

[4]. These structural patterns represent the secondary structure 

of a polypeptide. The secondary structure is defined by the 

presence of hydrogen bond patterns between the hydrogen 

atoms of the amino groups and the oxygen atoms of the 

carboxyl groups in the polypeptide chain. Regularity in the 

spatial conformation is maintained through these 

intermolecular interactions. There are two regular secondary 

structures: -helices (Pauling et al., 1951) [8, 9] and ˇ-sheets 

(Pauling and Corey, 1951) [8, 9]. There are also irregular 

conformations (coil and turns), but the ˛-helix and ˇ-sheets are 

the most stable and can be considered as the main elements 

present in 3-D protein structures. 

The tertiary structure of a protein is represented by the 

distribution of secondary structures in a 3-D space. The three-

dimensional shape assumed by a protein is also called native 

structure of the protein or functional structure. The native 

structure of a protein is formed by the variation of 

thermodynamic factors, i.e., covalent interactions, hydrogen 

bonds, hydrophobic interactions, electro-static interactions, 

van der Waals, and repulsive forces. In addition, the side-

chains play an important role in creating the final structure of 

the polypeptide. 

The tertiary structure of a protein allows the analysis and pre-

diction of the function of the protein in the cell. It is possible 

to identify the active site, binding sites on a receptor, or a 

recombination site for the action of another protein 

(Lehninger et al., 2005) [4]. The tertiary structure of a protein 

is related to its topology (or fold). The topology of a protein is 

given by the type of succession of secondary structures that 

are connected to and from the shape in which these structures 

are organized in a 3-D space. 

A protein may have different polypeptide chains (or subunits) 

forming a quaternary structure. The quaternary structure of a 

protein is the arrangement of various tertiary structures. This 

structure is maintained by the same forces that determine the 

secondary and tertiary structures (hydrogen bonds, 

hydrophobic interactions, hydrophilic interactions) 

(Lehninger et al., 2005) [4]. 

 

2. Protein Structure prediction methods – CASP & latest 

modifications 

The prediction of the 3-D structure of polypeptides based only 

on the amino acid sequence (primary structure) is a problem 

that has, over the last decades, challenged biochemists, 

biologists, computer scientists and mathematicians. The 

Protein Structure Prediction Problem is one of the main 

research problems in Structural Bioinformatics. The main 

challenge is to understand how the information encoded in the 

linear sequence of amino acid residues is translated into the 3-

D structure, and from this acquired knowledge, to develop 

computational methodologies that can correctly predict the 

native structure of a protein molecule. Many methods and 

algorithms have been proposed, tested and analysed over the 

years as a solution to this complex problem. 

 

2.1 Floudas (Floudas et al., 2006) [2] classifies the 

computational methods for protein structure prediction 

into four groups 
1. First principle methods without database information 

2. First principle methods with database information 

3. Fold recognition and threading methods 

4. Comparative modelling methods and sequence alignment 

strategies 

Regardless of the group, all developed 3-D protein structure 

prediction methods have to be tested for the ability to predict 

new protein structures. Every other year since 1994 a 

worldwide experiment called CASP (Critical Assessment of 

Structure Prediction) is performed to test protein structure 

prediction methods. Structural biologists who are about to 

publish a structure are asked to submit the corresponding 

sequence for structure prediction. The predictions are then 

compared with the newly experimentally determined 

structures (by NMR or X-ray crystallography methods). 

CASP allows research groups with an opportunity to 

objectively test their structure prediction methods and 

provides an independent assessment of the state-of-the art 

protein structure modelling. The CASP competition involves 

a large number of research groups using a variety of methods 

from the four groups listed above. 
 

The most significant progress in last CASP was identified 

by template-based modelling methods (methods that use 

database information) (Huang et al., 2014) [3]. 

There was evidence of improved accuracy for targets of mid-
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range difficulty, probably due to improved methods that 

combine information from multiple templates. The major 

remaining challenge in this class of methods is the 

development of better methods for template production and 

identification; accurate structures for those regions are not 

easily derived from an obvious template. 

CASP9 and CASP10 did not reveal much progress in Free 

Modelling methods (first principle methods without database 

information) among the methods that have been tested, I-

Tasser presented a significant improvement in its pre-dictions. 

This improvement happened because I-Tasser incorporates 

two components: REMO and FG-MD (Li and Zhang, 2011) 

[5]. REMO is a method for atomic structure construction and 

improvement of hydrogen-bonding network and FG-MD is 

fragment-guided molecular dynamics based method that uses 

constrained molecular dynamics simulation to adjust the 

position of each atom in the protein. 

Each of the four classes of protein structure prediction 

methods that will be detailed below have some limitations. 

The analysis of CASP9 experiments reveals that the best 

results are achieved by methods which combine principles of 

the four groups of methods. First principle methods without 

database information have limitations with respect to the size 

of the conformational search space. 

It is not possible to simulate, in plausible time, all folding 

process of long sequences of amino acid residues. Methods 

that use fragments still have two major limitations: the first 

one is related to the challenge of dealing with large 

conformational search spaces caused by different combination 

of such fragments; the second refers to the challenge of 

reducing the potential energy in regions where combinations 

of fragments occur. 

Despite the high quality predictions, comparative modelling 

and fold recognition also have some limitations such as the 

inability to perform prediction of new folds. This is explained 

by the fact that these methodologies can only predict 

structures of protein sequences which are similar or nearly 

identical to other protein sequences of known structures in the 

PDB. Another limitation is that it is not possible to study the 

folding process of the protein, i.e., the path that an unfolded 

protein traverses to the functional state (native state). 

 

3. First principle methods without database information 

Ab initio methods, the first principle methods without 

database information, are founded on thermodynamics and 

based on the fact that the native structure of a protein 

corresponds to the global minimum of its free energy. Ab 

initio structure prediction methods aim at predicting the native 

conformation of a protein considering only the amino acid 

sequence defines “Ab initio folding” as the class of methods 

that are based on potential energy functions that describe the 

physics of a current conformational state and where only this 

potential function is used to search the native structure of the 

polypeptide. 

In pure Ab initio methods the use of structural templates from 

a database such as the PDB is not allowed. The structural 

information from determined structures is only used in the 

parameterization of empirical all-atoms potentials used in 

force-fields (potential energy functions). Ab initio protein 

folding is considered a global optimization problem where the 

goal is to identify the values of a variable set (torsion angles, 

position of all atoms or a specific set of atoms in the protein 

structure) that describe the minimum energy of the 

polypeptide conformation. 

Ab initio methods simulate the protein conformational space 

using an energy function, which describes the internal energy 

of the protein and its interactions with the environment in 

which it is inserted. The goal is to find a global minimum of 

free energy that corresponds to the native or functional state 

of the protein. Ab initio methods can predict new folds 

because they are not limited to templates from the PDB. 

However, these methods have some limitations with respect 

to the size of the conformational search space. This problem 

is frequently referred to by many authors as the Levinthal’s 

paradox (Zwanzig et al., 1991) following studies carried out 

by Cyrus Levinthal in 1968. 

In his experiments, Levinthal noted that due to the very large 

number of degrees of freedom in an unfolded polypeptide 

chain, a protein molecule has an enormous number of possible 

conformations (thus rendering a NP-Complete problem).  

 

3.1 In general an AB initio method requires three 

elements: 

a) A geometric representation of the protein chain, 

b) A potential function and 

c) An energy surface searching technique. 

 

3.1.1 Geometric representation: This representation 

corresponds to the way that computationally we will represent 

the structure of a protein. The most detailed representations 

include all atoms of the protein and the surrounding solvent 

molecules (for example, H2 O). Using all atoms to represent 

the protein is computationally expensive. Such 

representations can be simplified in a number of ways: the all-

atom model of both the protein and the solvent environment 

(explicit solvent) is usually replaced by employing an united 

atom model, where the solvent is modeled by potential fields 

of various descriptions (implicit solvent). 

In general, the united-atom model is frequently used to reduce 

the computational cost. In this model, explicit hydrogen 

atoms-with the exception of those that have the capability to 

participate in hydrogen bonds – are eliminated. Virtual-atoms 

can also be used to represent one residue and reduce the 

computational cost. In turn, Rotamers can also be used to 

represent a limited set of conformations that side-chains can 

adopt in the polypeptide structure. 

Almost all Ab initio folding methods use some form of 

simplified geometry model, in which single virtual atoms of 

the model represent a number of atoms in the all-atom model. 

The geometric representation is one of the most important 

elements of an Ab initio method and is directly related to the 

reduction or increase of the associated computational 

complexity. An all-atom model can demand enormous 

computational effort during a simulation. On the other hand, 

simplified representation models can preserve the main 

structure characteristics and reduce the computational time 

demanded by a protein folding simulation. 

 

3.1.2 Potential functions: The second element of an Ab initio 

method is a potential energy function. Potential energy 

functions are used in Molecular Mechanics (MM) 

simulations, protein design (Li et al., 2013) [6] and protein 

structure prediction. 

There are two categories of potentials: MM potentials and 

protein structure-derived potential functions (scoring 

functions). The first category aims at modeling the forces that 

determine protein con-formations using physically-based 

parameterized functional forms from small molecule data or 

in vacuo quantum mechanics calculations. The second 
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category is empirically derived from experimental structures 

from the PDB. These two classes of potentials represent the 

forces that determine the macromolecular conformation: 

solvation, electrostatic, van der Waals interactions, covalent 

bonds, angles, torsions. 

The main advantage of using a knowledge-based energy 

function is that it can model any behaviour observed in known 

protein crystal structures, even when there is no good physical 

understanding of their behaviour. The disadvantage is that 

these functions cannot predict new behaviours absent in the 

training set obtained from the experimental database. 

A potential energy function incorporates two types of terms: 

bonded and non-bonded. The bonded terms (bonds, angles 

and torsions) are covalently linked. The bonded terms 

constrain bond lengths and angles near their equilibrium 

values. The bonded terms also include a torsional potential 

(torsion) that models the periodic energy barriers encountered 

during bond rotation. The non-bonded potential includes: 

ionic bonds, hydrophobic inter-actions, hydrogen bonds, van 

der Waals forces, and dipole–dipole bonds. There is a great 

number of potential energy functions used in computational 

molecular biology. AMBER, CHARMM and ECEPP are the 

most widely used potential energy functions in 3-D PSP and 

Protein Folding problems. 

 

3.1.3 Energy surface search techniques: methods for Ab 

initio pre-diction include Molecular Dynamics simulations of 

proteins and protein-substrate complexes; Monte Carlo 

simulations that do not use forces but rather compare 

energies, via the use of Boltz-mann probabilities. Genetic 

Algorithms which are based on populations of solutions by 

iterative cycles of operations and try to improve on the 

sampling and the convergence of Monte Carlo approaches and 

exhaustive and semi-exhaustive lattice-based studies which 

are based on using a crude/approximate fold representation 

(such as two residues per lattice point) and then exploring all 

or large amounts of the conformational space given the crude 

representation. 

There are many computational packages used in Ab initio 

protein structure simulations. These simulation packages are 

frequently used in the protein folding problem and in other 

molecular modelling problems such as molecular docking, 

which predicts the preferred orientation of a molecule with 

respect to another molecule when bound to each other to form 

a stable complex. There are also Ab initio algorithms 

developed specifically for the 3-D PSP 

 

Some of these are 

AMBER- Assisted Model Building with Energy Refinement 

CHARMM- Chemistry at HARvard Molecular Mechanics 

GROMACS- Groningen Machine for Chemical Simulation 

TINKER- Software Tools for Molecular Design 

LINUS -Local Independent Nucleated Units of Structure 

 

4. First principle methods with database information 

In first principle methods with database information general 

rules of protein structures are extracted from protein databases 

and used to build starting point 3-D protein structures. These 

methods do not compare a target sequence to a known 

structure, but they compare fragments, i.e. short amino acid 

sub-sequences of a target fragment against fragments of 

known protein structures. 

This arises from the observation that when a new fold is 

discovered, it is composed of common structural motifs or 

fragments from super-secondary structures of proteins with 

known structures. Thus, if there are protein fragments that 

fold into similar structures, then this information or these 

fragments can be used to construct 3-D structural models of 

proteins. This is the essence of the methods based on 

fragments. The conformation of a protein is seen as a set of 

various fragments of amino acid sequences representing 

various structural motifs that are combined to form a 3-D 

protein structure. When homologue fragments are identified 

they are assembled into a structure through scoring functions 

and optimization algorithms. 

The fragments are assembled through a fragment assembly 

procedure with the purpose of finding the structure with the 

lowest potential energy. When finding polypeptide structures 

with the lowest energy potential, these methods are similar to 

ab initio methods. However, they cannot be classified as ab 

initio methods because they use database information to 

predict the structure of polypeptides. Fragment-based 

methods are based on the premise that local interactions can 

define local structures in proteins. Local structures present in 

known protein structures are used in order to predict the 

structure of a target amino acid sequence. When appropriate 

fragments have been identified, compact structures can be 

assembled by randomly combining fragments using, for 

example, a simulated annealing approach. 

Similar local sequences do not always present the same 3-D 

structure. This occurs because in a 3-D structure a large 

number of physicochemical interactions are present; such 

interactions con-tribute not only to the stability of the global 

structure, but also to the configuration of the secondary 

structures. Thus, fragment-based methods cannot fragment the 

target amino acid sequence, search database template 

fragments, get their information and combine these fragments 

without any combination criterion. Non-covalent interactions 

between atoms of different regions of the molecule influence 

the formation of local structures. 

Fragment-based methods need to establish a relationship 

criterion between the fragments so that they can determine the 

fragments with higher probability of insertion during the 

prediction of the final structure. In this sense, scoring 

functions are frequently used. The fitness of a conformation 

can be assessed with scoring functions derived from 

conformational statistics of known proteins (Floudas et al., 

2006) [2]. 

Usually, given the complete sequence of amino acids in a 

protein, the fragment-based method are composed of five 

distinct stages where: 

1. It divides the target sequence into fragments; 

2. It carries out the search for similar sequences from each 

frag-ment, in a database of known structures; 

3. It classifies the fragments (scoring); 

4. It constructs the three-dimensional structure from the 

fragment template using a combination technique; 

5. Finally, it refines the conformation. 

 

As first principle method without database information, 

fragment-based methods offer advantages over the other 

classes of prediction methods. The first advantage refers to 

the ability of predicting new folds, which cannot be achieved 

by methods based on homology modelling. In comparison 

with Ab initio methods, fragment-based methods take 

advantage of the reduction of the conformational search 

space. 

This reduction is due to the fact that in a simple replacement 

of a fragment in the target protein, this fragment moves from 

one region of a protein which has a structure with minimum 
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potential energy. However, despite reducing the 

conformational search space, the methods that use fragments 

still have two major limitations. 

The first one is related to the challenge of dealing with large 

conformational search spaces caused by different combination 

of such fragments. The second one refers to the challenge of 

reducing the potential energy in regions where combination of 

fragments occur. Fragment-based methods produced very 

positive results in the CASP experiments (Moult et al., 2014) 

[7]. 

 

5. Fold recognition and threading methods 

Fold recognition methods are motivated by the notion that 

structure is more evolutionary preserved than sequence, i.e., 

proteins with no apparent sequence similarity could have 

similar folds. Several studies in the last years have indicated 

that the number of protein structural folds in nature is limited. 

Today, for example, there are approximately ten different 

folds in fifty percent of the proteins with known structure. 

The general goal of 3-D protein structure prediction by 

threading methods is to fit a protein sequence correctly 

against a structural model. During this procedure the target 

amino acid sequence is placed, following their sequential 

order, into structural positions of a template 3-D structure in 

an optimal way. 

 

5.1 This involves two basic procedures: 

a) Selecting a structural model from a library of models  

b) Finding the correct replacement between the target 

sequences against the structural models in the space of 

possible sequence-structure alignments. 

Threading methods use structural information such as residue-

residue contact patterns, secondary structure and solvent 

accessibility, and after identifying the structural similarities, 

which cannot be detected solely by the similarities between 

the amino acid sequences, the predicted structural models are 

constructed. 

In threading methods for the 3-D PSP problem it is necessary 

to solve the problem of sequence-structure replacement, 

where, given a solved structure T = t1, t2, . . ., tn and a target 

sequence S = s1, s2, . . ., sm the main goal is to find the best 

match between S and T. Threading methods use known 3-D 

protein structures as templates for sequences of unknown 

structures. Threading methods try to identify templates with 

similar fold with or without direct evolutionary relations 

(analogue). Homologue proteins are the result of divergent 

evolution and often share a common function. Analogue 

proteins do not have a common ancestor and generally do not 

have a common function. In both cases the proteins share a 

common three-dimensional structure without a significant 

sequence similarity. Comparative modeling usually employs 

sequence-sequence comparison while threading usually 

exploits structure information to assist alignment. Com-pared 

to first principle methods without database information (Ab 

initio), threading methods seek to optimize a potential energy 

function (an objective or scored function) measuring the 

fitting quality of a sequence in a particular 3-D configuration. 

This measure will be assessed using statistical or energetic 

measurements for the over-all likelihood of the target amino 

acid sequence adopting one of the available structural folds. 

In a general form fold recognition methods can be divided in 

two group: profile-based and pair potentials-based. On the 

first group the information of the structural database 

containing potential target structures is represented in a linear 

form or profile. In this case the target protein is matched in 

turn with this profile. The second group uses pair potentials 

which score the propensity of two residues being at a certain 

distance.  

 

5.2 A threading method typically consists of three 

components: 

1) Construction of a library of potential folds or structural 

templates. 

2) A scoring schema to evaluate any particular placement of 

a target sequence into each fold. 

3) A method to search over the vast space of possible 

replacements between each sequence and each fold for 

the best set that gives the best total score. Next, we detail 

these four components. 

 

5.3 Construction of a library of potential folds or 

structural tem-plates: the library of folds is constructed from 

known native protein structures derived, for example, from 

the PDB. Usually, the 3-D coordinates of a protein structure 

are reduced to more abstract representations. Structural core 

elements are defined by the secondary structure elements: ˇ-

sheet, ˛-helix, left handed helix, coil, strands. Frequently, 

side-chain information is removed. What remains is a 

backbone template of blank or empty amino acid positions 

 

5.4 A scoring scheme to evaluate any particular placement 

of a sequence into each fold: the scoring functions are 

usually a list of statistical references of each amino acid 

residue to each structural or fold environment. These 

functions describe how favorable a replacement of a query 

sequence and a template structure are. Most threading 

methods do not use physical full-atom free energy function as 

used by first principle methods without database information. 

Most threading objective energy functions are determined 

empirically by statistical analysis of 3-D data obtained from 

the PDB. These functions are referred to in general as 

knowledge-based functions and are used in both profile-based 

and pair potentials-based methods. 

 

5.5 A method to search over the vast space of possible 

replacements: the use of an algorithm to identify the optimal 

sequence-structure replacement is essential in a threading 

method. The main task is to identify the global best score and 

the optimal fitting/threading. There are at least two main 

approaches to the sequence-structure replacement: (1) 3-D 

profile methods and (2) contact potentials Today most 

threading methods fall into category 2 above.  

 

6. Comparative modelling methods and sequence 

alignment strategies 

In comparative modeling a target sequence of amino acid 

residues (target protein) is aligned against the amino acid 

sequence of another protein with known structure (template 

protein) and stored in the PDB. If the target sequence is 

similar to the sequence of the template protein, the structural 

information obtained from the known structure is used for 

modeling the target protein. The main idea of this kind of 

method is to construct an atomic-resolution model of the 

target protein from its amino acid sequence and an 

experimental 3-D structure of a related homologous protein. 

Comparative modeling can be applied whenever it is possible 

to detect an evolutionary relation-ship between the target 

protein and the template protein of which the 3D structure is 

known. The evolutionary relationship between proteins is a 

fundamental factor in comparative modeling methods and the 
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target protein can be modeled from homologous proteins with 

3-D structures determined experimentally. The structure of 

these proteins is similar in the sense that amino acid residues 

with identical physico-chemical properties occupy the same 

position in homologous proteins 

 

6.1 Steps in model production 

The homology modeling procedure can be broken down into 

four sequential steps: template selection, target-template 

alignment, model construction, and model assessment. The 

first two steps are often essentially performed together, as the 

most common methods of identifying templates rely on the 

production of sequence alignments; however, these 

alignments may not be of sufficient quality because database 

search techniques prioritize speed over alignment quality. 

These processes can be performed iteratively to improve the 

quality of the final model, although quality assessments that 

are not dependent on the true target structure are still under 

development process. 

Optimizing the speed and accuracy of these steps for use in 

large-scale automated structure prediction is a key component 

of structural genomics initiatives, partly because the resulting 

volume of data will be too large to process manually and 

partly because the goal of structural genomics requires 

providing models of reasonable quality to researchers who are 

not themselves structure prediction experts. 

 

6.2 Template selection and sequence alignment 

The critical first step in homology modeling is the 

identification of the best template structure, if indeed any are 

available. The simplest method of template identification 

relies on serial pairwise sequence alignments aided by 

database search techniques such as FASTA and BLAST. 

More sensitive methods based on multiple sequence 

alignment – of which PSI-BLAST is the most common 

example – iteratively update their position-specific scoring 

matrix to successively identify more distantly related 

homologs. This family of methods has been shown to produce 

a larger number of potential templates and to identify better 

templates for sequences that have only distant relationships to 

any solved structure. 

Protein threading, also known as fold recognition or 3D-1D 

alignment, can also be used as a search technique for 

identifying templates to be used in traditional homology 

modeling methods. Recent CASP experiments indicate that 

some protein threading methods such as RaptorX indeed are 

more sensitive than purely sequence(profile)-based methods 

when only distantly-related templates are available for the 

proteins under prediction. When performing a BLAST search, 

a reliable first approach is to identify hits with a sufficiently 

low E-value, which are considered sufficiently close in 

evolution to make a reliable homology model. 

Other factors may tip the balance in marginal cases; for 

example, the template may have a function similar to that of 

the query sequence, or it may belong to a homologous operon. 

However, a template with a poor E-value should generally not 

be chosen, even if it is the only one available, since it may 

well have a wrong structure, leading to the production of a 

misguided model. A better approach is to submit the primary 

sequence to fold-recognition servers [9] or, better still, 

consensus meta-servers which improve upon individual fold-

recognition servers by identifying similarities (consensus) 

among independent predictions. Often several candidate 

template structures are identified by these approaches. 

Although some methods can generate hybrid models with 

better accuracy from multiple templates, most methods rely 

on a single template. Therefore, choosing the best template 

from among the candidates is a key step, and can affect the 

final accuracy of the structure significantly. 

This choice is guided by several factors, such as the similarity 

of the query and template sequences, of their functions, and of 

the predicted query and observed template secondary 

structures. Perhaps most importantly, the coverage of the 

aligned regions: the fraction of the query sequence structure 

that can be predicted from the template, and the plausibility of 

the resulting model. Thus, sometimes several homology 

models are produced for a single query sequence, with the 

most likely candidate chosen only in the final step. 

 

6.3 Model generation 

Given a template and an alignment, the information contained 

therein must be used to generate a three-dimensional 

structural model of the target, represented as a set of Cartesian 

coordinates for each atom in the protein. Three major classes 

of model generation methods have been proposed. 

 

6.4 Fragment assembly 

The original method of homology modeling relied on the 

assembly of a complete model from conserved structural 

fragments identified in closely related solved structures. For 

example, a modeling study of serine proteases in mammals 

identified a sharp distinction between "core" structural 

regions conserved in all experimental structures in the class, 

and variable regions typically located in the loops where the 

majority of the sequence differences were localized. Thus 

unsolved proteins could be modeled by first constructing the 

conserved core and then substituting variable regions from 

other proteins in the set of solved structures. Current 

implementations of this method differ mainly in the way they 

deal with regions that are not conserved or that lack a 

template. The variable regions are often constructed with the 

help of fragment libraries. 

 

6.5 Segment matching 

The segment-matching method divides the target into a series 

of short segments, each of which is matched to its own 

template fitted from the Protein Data Bank. Thus, sequence 

alignment is done over segments rather than over the entire 

protein. Selection of the template for each segment is based 

on sequence similarity, comparisons of alpha carbon 

coordinates, and predicted steric conflicts arising from the van 

der Waals radii of the divergent atoms between target and 

template. 

 

6.6 Satisfaction of spatial restraints 

The most common current homology modeling method takes 

its inspiration from calculations required to construct a three-

dimensional structure from data generated by NMR 

spectroscopy. One or more target-template alignments are 

used to construct a set of geometrical criteria that are then 

converted to probability density functions for each restraint. 

Restraints applied to the main protein internal coordinates – 

protein backbone distances and dihedral angles – serve as the 

basis for a global optimization procedure that originally used 

conjugate gradient energy minimization to iteratively refine 

the positions of all heavy atoms in the protein. 

This method had been dramatically expanded to apply 

specifically to loop modeling, which can be extremely 

difficult due to the high flexibility of loops in proteins in 

aqueous solution. A more recent expansion applies the 
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spatial-restraint model to electron density maps derived from 

cryoelectron microscopy studies, which provide low-

resolution information that is not usually itself sufficient to 

generate atomic-resolution structural models. To address the 

problem of inaccuracies in initial target-template sequence 

alignment, an iterative procedure has also been introduced to 

refine the alignment on the basis of the initial structural fit. 

The most commonly used software in spatial restraint-based 

modeling is MODELLER and a database called ModBase has 

been established for reliable models generated with it. 

 

6.7 Loop modeling 

Regions of the target sequence that are not aligned to a 

template are modeled by loop modeling; they are the most 

susceptible to major modeling errors and occur with higher 

frequency when the target and template have low sequence 

identity. The coordinates of unmatched sections determined 

by loop modeling programs are generally much less accurate 

than those obtained from simply copying the coordinates of a 

known structure, particularly if the loop is longer than 10 

residues. The first two side chain dihedral angles (χ1 and χ2) 

can usually be estimated within 30° for an accurate backbone 

structure; however, the later dihedral angles found in longer 

side chains such as lysine and arginine are notoriously 

difficult to predict. Moreover, small errors in χ1 (and, to a 

lesser extent, in χ2) can cause relatively large errors in the 

positions of the atoms at the terminus of side chain; such 

atoms often have a functional importance, particularly when 

located near the active site. 

 

7. List of protein structure prediction software 

This list of protein structure prediction software 

summarizes commonly used software tools in protein 

structure prediction, including homology modeling, protein 

threading, ab initio methods, secondary structure prediction, 

and transmembrane helix and signal peptide prediction. 

 

7.1 Software highlight 

7.1.1 I-TASSER is the best server for protein structure 

prediction according to the 2006-2012 CASP experiments 

(CASP7, CASP8, CASP9, CASP10, and CASP11). The 

standalone I-TASSER package is freely available for 

download. 

 

7.1.2 HHpred was the leading server for template-based 

protein structure prediction in the 2010 CASP9 experiment. It 

has a median response time of a few minutes instead of days 

like other top-performing servers. HHpred is often used for 

remote homology detection and homology-based function 

prediction. It runs with the free, open-source software 

package HH-suite for fast sequence searching, protein 

threading and remote homology detection. 

 

7.1.3 RaptorX excels at aligning hard targets according to the 

2010 CASP9 experiments. RaptorX generates the 

significantly better alignments for the hardest 50 CASP9 

template-based modeling targets than other servers including 

those using consensus and refinement methods. The RaptorX 

server is available at server 

 

7.1.4 MODELLER is a popular software tool for producing 

homology models by satisfaction of spatial restraints using 

methodology derived from NMR spectroscopy data 

processing. The Mod Web comparative protein structure 

modeling web-server uses primarily MODELLER for 

automatic comparative modeling. 

 

7.1.5 Geno3D is webserver for producing homology models 

by satisfaction of spatial restraints using methodology derived 

from NMR data processing. webserver 

 

7.1.6 Swiss-Model provides an automated web server for 

protein structure homology modeling. 

 

 7.1.7 bioinfo-pl and Robetta widely used servers for protein 

structure prediction. SPARKSx is one of the top performing 

servers in the CASP focused on the remote fold recognition. 

 

7.1.8 PEP-FOLD is a de novo approach aimed at predicting 

peptide structures from amino acid sequences, based on a 

HMM structural alphabet. 

 

7.1.9 Phyre and Phyre2 are amongst the top performing 

servers in the CASP international blind trials of structure 

prediction in homology modelling and remote fold 

recognition, and are designed with an emphasis on ease of use 

for non-experts. 

 

7.1.10 RAPTOR (software) is a protein threading software 

that is based on integer programming. The basic algorithm for 

threading is described in Bowie (1991) and is fairly 

straightforward to implement. 

 

7.1.11 QUARK is an algorithm developed for ab initio 

protein structure modelling. 

 

7.1.12 Abalone is a Molecular Dynamics program for folding 

simulations with explicit or implicit water models. 

 

7.1.13 TIP is a knowledgebase of STRUCTFAST models and 

precomputed similarity relationships between sequences, 

structures, and binding sites. Several distributed computing 

projects concerning protein structure prediction have also 

been implemented, such as the Folding@home, 

Rosetta@home, Human Proteome Folding Project, 

Predictor@home, and TANPAKU. 

 

7.1.14 CABS-FOLD is a server that provides tools for protein 

structure prediction from sequence only (de novo modelling) 

and also using alternative templates (consensus modelling). 

 

7.1.15 Bhageerath is another Ab-initio modelling server. 

 

7.1.16 Foldit program seeks to investigate the pattern-

recognition and puzzle-solving abilities inherent to the human 

mind in order to create more successful computer protein 

structure prediction software. 

 

7.1.17 BBSP (Building Blocks Structure Predictor) is a 

program that makes use of Hybrid template-based approaches, 

which associate fragment conformations for the sequence and 

detect distant fold similarities based on the fragment 

similarities Computational approaches provide a fast 

alternative route to antibody structure prediction. Recently 

developed antibody FV region high resolution structure 

prediction algorithms, like Rosetta Antibody, have been 

shown to generate high resolution homology models which 

have been used for successful docking  
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8. Conclusion 

The classification of the prediction methods into four classes, 

(1) first principle methods without database information; (2) 

first principle methods with database information; (3) fold 

recognition and threading methods and (4) comparative 

modelling methods and sequence alignment strategies – gives 

a more general view about which methods can be used in the 

prediction, how experimental data can be used in the 

prediction tasks, and how a protein conformation can be 

represented in terms of physical and chemical laws (in the 

protein folding process). 

Knowledge-based methods are limited to experimental data, 

e.g., homology modelling can only predict structures of 

protein sequences which are similar or nearly identical to 

other protein sequences of known structure. Fold recognition 

via threading is limited to the fold library derived from the 

PDB structure database. Ab initio methods can obtain new 

structures with novel folds. However, the complexity and high 

dimensionality of the conformational search space even for a 

small protein molecule still makes the problem intractable. 

Over the last years, probably the most important results in this 

field were produced by hybrid methods such as the ones based 

on first principles with database information. Such hybrid 

methods combine the accuracy of knowledge-based methods 

with a more realistic, force field-based, physicochemical 

description of a protein. The last results presented in the 

CASP competition corroborate this statement. ROSETTA, 

FRAGFOLD, I-TASSER and LINUS all belong to this class 

of methods. ROSETTA and I-TASSER have been the most 

successful predictors over the last years according to data 

from the CASP experiments. In the last CASP, the 

bioinformatics com-munity focused on the problem of 

predicting the local and global regions of the 3-D model when 

experimental structural data are not available. Machine 

learning techniques, statistical potentials, physical energy 

functions have been applied in order to find accurate 

structures. 

Finally, protein structure prediction is a very difficult problem 

and further research remains to be done. The development of 

new strategies, the adaptation and investigation of new 

methods and the combination of existing and state-of-the-art 

computational meth-ods and techniques to the 3-D PSP 

problem are clearly needed. Understanding how experimental 

data can be better used in combination with Ab initio 

techniques is another open research question. In summary, 

there are several research opportunities and avenues to be 

explored in this field, with relevant multidisciplinary 

applications in computer science, bioinformatics, chemistry, 

biochemistry, and the medical sciences. 
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