

P-ISSN: 2349-8528 E-ISSN: 2321-4902 IJCS 2019; 7(1): 730-743 © 2019 IJCS Received: 15-11-2018 Accepted: 20-12-2018

SK Acharva Asstt Prof. CoH, SDAU,

Jagudan Gujarat, India

Rajasthan College of Agriculture, MPUAT, Udaipur, Rajasthan,

KD Ameta

Rajasthan College of Agriculture, MPUAT, Udaipur, Rajasthan, India

RB Dubey

Rajasthan College of Agriculture, MPUAT, Udaipur, Rajasthan,

Stability analysis in bitter gourd (Momordica charantia L.)

SK Acharya, RA Kaushik, KD Ameta and RB Dubey

Abstract

Experiment was carried out at Horticulture Farm, Rajasthan College of Agriculture, Udaipur and Farmer field of Chittaurgarh district during Kharif and zaid season, 2012 and 2013. Crossing were made among ten parents of bitter gourd viz., Solan Hara, Pusa Do Mousmi, BG 14, Green Long, MDU-1, IC-85605, IC-45346, IC-68272-1, IC-68237 and Solan Collection using partial diallel mating system to produce 45 F₁ crosses. Parents, their crosses and check viz., Jhalri, US-6214 and US-6203 were evaluated in field trials in two locations at Udaipur and Chittaurgarh in two different seasons which consists four environments. The stability analysis revealed that mean square due to genotypes was significant for all the characters in the experiments. The mean square due to linear component i.e. G x E (linear) was significant for all the characters except node at which first female flower appeared. For yield and yield contributing traits hybrid P1×P9 was found stable and suitable under favourable environment. Hybrid P2 x P₆ and P₂ x P₁₀ found stable and suitable under favourable environment for quality trait (T.S.S). Hybrid P1×P9 which exhibited stability and suitability under favourable environment for number of fruit per vine, fruit length, fruit weight, specific gravity and total yield per vine. The significant mean squares due to pooled deviation for all the traits except node at which first female flower appeared and yield per vine depicted that the genotypes differed considerably with respect to their stability and prediction for these traits would be difficult.

Keywords: parents, heterosis, GCA, SCA, yield, Momordica charantia

Introduction

Bitter gourd (Momordica charantia L.) is commonly known as Karela in Hindi and an important cucurbits of family Cucurbitaceae. It is a large genus with many species of annual and perennial climbers of which Momordica charantia L. is widely cultivated. It was originated from old world tropics, bitter gourd (also known as bitter melon, balsam pear or bitter cucumber) was long ago fanned out into rest of new world. Wild Momordica charantia var. abbreviata, a native of Asia may be the progenitor of domesticated ones. The selection of best parents for hybridization has to be based upon the complete genetic information and esteemed prepotency of potential parents. Improvement in yield is normally attained through exploitation of the genetically diverse parents in breeding programmes. Keeping the above facts in view, the experiment was carried out to identify the ideal genotype and their cross combinations along with the GxE interaction suitable for the regions.

Materials and Methods

Field experiment was carried out at Horticulture Farm, Department of Horticulture, Rajasthan College of Agriculture, Udaipur and Farmer field of Chittaurgarh district during Kharif and zaid season, 2012-2013. Crossing were made among ten parents of bitter gourd viz., Parents {Solan Hara (P₁), Pusa Do-Mousmi (P₂), BG-14 (P₃), Green Long (P₄), MDU-1 (P₅), IC-85605 (P₆), IC-45346 (P₇), IC-68272-1 (P₈), IC-68237 (P₉) and Solan Collection (P₁₀)} their crosses and check viz., Jhalri, US-6214 and US-6203 were evaluated in two locations at Udaipur and Chittaurgarh and two environments which consists four environments using partial diallel mating system to produce 45 F₁ crosses. The experiment was laid out in Randomized Block Design with three replications. Randomization of lines was done with the help of random number table as advocated by Fisher (1954) [7].

Correspondence SK Acharva Asstt Prof. CoH, SDAU, Jagudan Gujarat, India

Results and Discussion Analysis of variance

The mean squares due to phenotypic stability with regards to different traits on the basis of pooled data are presented in (Table 1) Mean squares due to genotypes including both parents and hybrids were significant for all the characters studied except node number at which first female flower appeared. Significant mean squares due to environment (E) plus genotypes x environment (G x E) interaction were also observed significant for all the characters except node at which first female flower appeared. Mean squares due to environment (linear) were significant for all the characters studied except node at which first female flower appeared and number of flower per vine indicating that macro environmental differences were present under all the environments studied. The mean squares due to genotypes x environment G x E (L) interactions were also significant for all the characters except node at which first female flower appeared and number of female flower per vine. The significant mean squares due to pooled deviation for all the traits except node at which first female flower appeared and yield per vine depicted that the genotypes differed considerably with respect to their stability and prediction for these traits would be difficult.

Days to anthesis of first male flower

A perusal of data (Table 3) revealed that out of 58 genotypes 27 were exhibited non-significant deviation from regression (S²di), indicating their predictable behavior for this traits. Among the parents, P₆ showed non-significant deviation from regression (S²di) and regression coefficient less than unity (bi <1) along with mean value lower than the population mean, therefore, it indicates their stability under poor environments and suitability for early flowering. The lines P2 showed nonsignificant S²di and regression coefficient greater than unity (bi >1) with lower mean value than the population mean, thereby indicating its stability under favourable environments and suitability for early flowering. one hybrids viz., P8xP9 showed non-significant deviation from regression (S2di) and regression coefficient nearly equal to unity (bi =1) along with mean value lower than the population mean, thereby indicating their average stability under different environments and suitability for earliness. These hybrids would express early flowering in unfavourable environments.

Days to anthesis of first female flower

Stability parameters for this trait (Table 3) revealed that out of 58 genotypes, 21 genotypes exhibited non-significant deviation from regression (S²di) and would show predictable behavior for days to anthesis of first female flower. Parental line P_{10} exhibited non-significant S²di and regression coefficient greater than unity (bi >1) with lower mean value than the population mean and would show stable performance for early flowering in favourable environments. Two checks viz.- US-6214 and US-6203 showed non-significant deviation from regression (S²di) and regression coefficient greater than unity (bi >1) along with mean value lower than the population mean thereby indicating their stability under favourable environments and suitability for early flowering.

Node at which first female flower appeared

A perusal of data (Table 4) pertaining to the node number at which first female flower appeared revealed that all of 58 genotypes exhibited non-significant deviation from regression indicating their predictable behavior. Among parents, three

parental lines P₁, P₇ and P₉₁₀ exhibited non- significant S²di and regression coefficient (bi <1) with lower mean values than the population mean, thereby indicating stability for early initiation of female flower in unfavourable environments. Among the hybrids eight hybrids viz., P₁xP₇, P₁xP₈, P₃xP₄, P₄xP₅, P₄xP₆, P₆xP₉, P₇xP₈ and P₇xP₉ exhibited non- significant S²di and regression coefficient less than unity (bi <1) with lower mean values than the population mean, indicating their stability for node at which first female flower appeared in unfavourable environment. Nine hybrids viz., P₁xP₂, P₁xP₁₀, P₂xP₃, P₂xP₄, P₅xP₈, P₆xP₁₀ and check US-6214 & US-6203 exhibited non-significant deviation from regression (S²di) and regression coefficient greater than unity (bi >1) with lower mean values than the population mean. These showed stability for node at which first female flower appeared in favourable environments.

Number of male flower per vine

Non-significant deviation from regression (S²di) was depicted by 43 genotypes (10 parents, 32 hybrids and 1 checks) indicating their predictable behavior for number of male flower per vine. Among the parents, P₅ and P₉ exhibited nonsignificant deviation from regression (S²di) and regression coefficient greater than unity (bi >1) with lower mean values than the population mean, indicating their stability under favourable environments for lower number of male flower per vine and lines P2, P3, P4, P6, P7, P8 and P10 exhibited nonsignificant deviation from regression (S²di) and regression coefficient less than unity (bi <1) with lower mean values than the population mean, indicating their stability under poor environments for lower number of male flower per vine. Hybrids P₁xP₃ and P₁xP₆ exhibited non-significant deviation from regression (S²di) and regression coefficient less than unity (bi <1) with lower mean values than the population mean, thereby indicating their stability under unfavourable environments. Two hybrids viz., P2xP3 and P2xP4 showed nonsignificant deviation from regression (S²di) and regression coefficient greater than unity (bi >1) with lower mean values than the population mean, indicating their stability under favourable environments for number of male flower per vine (Table 4).

Number of female flower per vine

A perusal data (Table 5) for this traits revealed that out of 58 genotypes, 45 genotypes (9 parents and 36 hybrids) exhibited non-significant deviation from regression (S²di), indicating stability and predictability for this trait. Among the parents, P₃ and P₄ exhibited non-significant deviation from regression (S^2di) and regression coefficient greater than unity (bi >1) with higher mean values than the population mean, indicating their stability under favourable environments for higher number of female flower per vine. Ten hybrids viz., P2xP3, P_2xP_5 , P_2xP_7 , P_4xP_7 , P_4xP_9 , P_5xP_6 , P_6xP_7 , P_6xP_9 , P_6x P_{10} and P₇xP₉ exhibited non-significant deviation from regression (S^2di) and regression coefficient less than unity (bi <1) with higher mean values than the population mean. These hybrids and checks were therefore considered suitable and stable in unfavourable environments. Hybrids P₃xP₅, P₃xP₈, P₃xP₁₀, P_4xP_5 , P_4xP_{10} , P_5xP_9 , P_5xP_{10} and P_6xP_8 showed nonsignificant deviation from regression (S²di) and regression coefficient greater than unity (bi >1) with higher mean values than the population mean. These hybrids and check were therefore considered suitable and stable in favourable environments.

Number of primary branches

A perusal of stability parameters for number of primary branches (Table 5) revealed that out of 58 genotypes 58 genotypes (10 parents, 45 hybrids and 3 checks) exhibited non-significant deviation from regression (S²di) and is as such predictable for this trait. Parental lines P6 exhibited nonsignificant deviation from regression (S²di) and regression coefficient less than unity (bi <1) with higher mean values than the population mean, thereby indicating their suitability and stability under unfavourable environments. Twenty nine hybrids exhibited non-significant deviation from regression (S^2di) and regression coefficient greater than unity (bi >1) with higher mean values than the population mean and thereby indicating their stability under favourable environments. Six hybrids viz P_3xP_5 , P_4xP_6 , P_4xP_7 , P_4xP_9 , P₅xP₁₀ and P₆xP₈ exhibited non-significant deviation from regression (S²di) and regression coefficient less than unity (bi <1) with higher mean values than the population mean, thereby indicating their suitability and stability under unfavourable environments.

Similar results for flowering traits have been reported by Narayan *et al.* (2006) ^[9], Prasad *et al.* (1987) ^[12] and Parmar (2000) ^[11].

Number of fruits per vine

A perusal of data (Table 6) for this character revealed that 37 genotypes (5 parents and 32 hybrids) exhibited nonsignificant deviation from regression (S²di), indicating their predictable behavior. Seventeen hybrids viz., P₁xP₉, P₂xP₆, P_2xP_8 , P_2xP_9 , P_3xP_4 , P_3xP_6 , P_3xP_7 , P_3x P_{10} , P_4xP_7 , P_4xP_9 , P₅xP₇, P₅xP₉, P₅xP₁₀, P₆xP₇, P₆xP₈, P₆xP₉ and P₇xP₉ exhibited non-significant deviation from regression (S²di) and regression coefficient greater than unity (bi >1), with higher mean value than the population mean. These hybrids were considered stable for favourable environments Four hybrids viz., P₁xP₅, P₂xP₇, P₄xP₅ and P₆xP₁₀ exhibited non-significant deviation from regression (S²di) and regression coefficient less than unity (bi <1) with higher mean than the population mean. These hybrids thus showed stability for unfavourable environments. Number of fruits per vine is probably the most closely associated trait with yield as evident by a number of reports indicating positive correlation between them (Sharma et al., (2016) [14] and Bhave et al. (2003) [1].

Fruit length (cm)

Data (Table 6) for fruit length revealed that out of 58 genotypes, 46 genotypes (9 parents, 35 hybrids and 2 checks) exhibited non-significant deviation from regression indicating their predictable behaviour. None of the parental lines exhibited non-significant deviation from regression (S²di) and regression coefficient less than unity (bi <1) along with mean value higher than the population mean. Hybrids P₂xP₄, P₂xP₇, $P_{3}xP_{4},\ P_{3}xP,\ P_{3}xP_{10},\ P_{4}xP_{7},\ P_{4}xP_{10},\ P_{5}xP_{9},\ P_{6}xP_{8},\ P_{6}xP_{9},$ P₆xP₁₀ and check Jhalri exhibited non-significant S²di and regression coefficient less than unity (bi <1) along with mean value higher than the population mean, thereby indicating their stability under unfavourable environments and suitability for longer fruit length. Thirteen hybrids viz., P1xP3, P1xP4, $P_1xP_9,\ P_2xP_3,\ P_2xP_9,\ P_2xP_{10},\ P_3xP_5,\ P_3x\ P_6,\ P_4xP_8,\ P_4xP_{10},$ P₅xP₈, P₅xP₁₀ and P₆xP₉ exhibited non-significant deviation from regression (S2di) and regression coefficient greater than unity (bi >1) with higher mean value than the population mean. These hybrids therefore, identified as stable under favourable environments for longer fruit length.

Fruit weight (g)

Perusal of data (Table 7) pertaining to fruit weight revealed that out of 58 genotypes, 53 genotypes, (8 parents, 42 hybrids and 3 checks) exhibited non-significant deviation from regression indicating their predictable behavior for this trait. Among the parents, one parent viz., P₁ exhibited nonsignificant deviation from regression (S²di) and regression coefficient greater than unity (bi >1) with higher mean values than the population mean, indicating their stability under favourable environments for higher fruit weight. Out of above 42 hybrids, seventeen hybrids exhibited non-significant deviation from regression (S²di) and regression coefficient less than unity (bi <1) along with mean value higher than the population mean, thereby indicating their stability under unfavourable environments and suitability for higher fruit weight. Hybrids P₁xP₆, P₁x P₈, P₁xP₉, P₂xP₄, P₂xP₆, P₂xP₉, P₃xP₅, P₃xP₆, P₉xP₁₀ and check Jhalri exhibited nonsignificant deviation from regression (S²di) and regression coefficient greater than unity (bi >1) with higher mean values than the population mean, indicating their stability under favourable environments for higher fruit weight.

Fruit diameter (cm)

Fifty genotypes reflecting non-significant deviation from the regression (S²di) and for their predictable behaviour of fruit diameter. These genotypes include 9 parents, 39 hybrids and 2 checks. Out of above 9 parents, none of the parental line exhibited non-significant deviation from regression (S²di) and regression coefficient greater than unity (bi >1) and (bi <1) with higher mean values than the population mean, indicating stability under favourable and unfavourable environments for higher fruit diameter.Out of above 39 hybrids, thirteen hybrids viz., P₁xP₆, P₁xP₈, P₁xP₉, P₁x P₁₀, P_2xP_6 , P_2xP_9 , P_2xP_{10} , P_3xP_7 , P_3xP_9 , P_4xP_9 , P_6xP_9 and P_7xP_8 exhibited non-significant deviation from regression (S²di) and regression coefficient less than unity (bi <1) along with mean value higher than the population mean, thereby indicating their stability under unfavourable environments and suitability for higher fruit diameter. Hybrids P₂xP₃, P₂xP₈, P₃xP₄, P₃xP₅, P₄xP₅, P₄xP₇, P₅xP₆, P₆xP₇, P₇xP₉, P₇xP₁₀, P₈xP₉ and P₉xP₁₀ showed non- significant S²di and regression coefficient nearly equal to unity (bi =1) with higher mean value than the population mean thereby indicating their average stability under different environments and suitability for higher fruit diameter. Hybrids P₁xP₂, P₁xP₃, P₁xP₅, P₁xP₇, P₂xP₇, P₃xP₆, $P_{3}xP_{8},\ P_{3}xP_{10},\ P_{4}xP_{6},\ P_{4}xP_{10},\ P_{5}xP_{7},\ P_{5}xP_{8},\ P_{5}xP_{9},\ P_{5}xP_{10},$ P_6xP_8 , P_6xP_{10} , P_7xP_8 and P_8xP_{10} exhibited non-significant deviation from regression (S²di) and regression coefficient greater than unity (bi >1) with higher mean values than the population mean, indicating their stability under favourable environments for higher fruit diameter (Table 7).

Specific gravity (g/cc)

Non-significant deviation from regression (S²di) was depicted by 33 genotypes (5 parents, 25 hybrids and 3 checks) thereby suggesting the predictability of performance of genotypes under reference for specific gravity (Table 8). Parental lines P₅ and P₆ having non-significant deviation from regression (S²di) and regression coefficient less than unity (bi <1) and higher mean values as compared to the population mean were considered suitable and stable under unfavourable environments. Eight hybrids *viz.*, P₁xP₃, P₂xP₄, P₂xP₆, P₃xP₄, P₅xP₈, P₆xP₇, P₈xP₁₀ and three checks –Jhalri, US-6214 and US-6203 which manifested non-significant deviation from regression (S²di) and regression coefficient below unity (bi

<1) along with higher mean values as compared to the population mean, were as such considered stable and suitable under unfavourable environments for specific gravity. Ten hybrids viz., P_1xP_2 , P_1xP_9 , P_1xP_{10} , P_2xP_3 , P_2xP_5 , P_2xP_{10} , P_5xP_9 , P_6xP_8 , P_6xP_{10} and P_7xP_{10} with non-significant deviation from regression (S²di) and regression coefficient greater than unity (bi >1) along with higher mean values than the population mean, thereby indicating that these hybrids were stable and suitable under favourable environments.

Number of seeds per fruit

Out of 58 genotypes 11 genotypes exhibited non-significant deviation from regression (S²di), indicating their predictable behaviour for number of seeds per fruit (Table 8). Parental lines P₁ and P₈ exhibited non-significant deviation from regression (S²di) and regression coefficient greater than unity (bi >1) with lower mean values than the population mean. These lines thus showed its superiority and stability under favourable environments. Two lines viz., P2 and P9 showed non-significant deviation from regression (S²di) and regression coefficient less than unity (bi <1) with lower mean values than the population mean, indicating their stability and suitability under unfavourable environments for number of seeds per fruit. Hybrid P₄xP₅ exhibited non-significant deviation from regression (S2di) and regression coefficient greater than unity (bi >1) with lower mean values than the population mean, thereby indicating stability under favourable environments.

Yield per vine (kg)

Out of 58 genotypes, 53 genotypes showed non-significant deviation from regression (S²di) indicating their predictable behavior (Table 9). Parents P₁, P₂, P₉, and P₁₀ exhibited nonsignificant S²di and regression coefficient nearly equal to unity (bi <1) with higher mean values than the population mean, thereby indicating stability under poor environments for yield per vine. Two other parents viz., P4 exhibited nonsignificant deviation from regression (S2di) and regression coefficient greater than unity (bi >1) with higher mean values than the population mean. These parents thus showed its superiority and stability under favourable environments. Eleven hybrids viz., P₁xP₂, P₁xP₄, P₁xP₇, P₁xP₈, P₂xP₃, P₂xP₁₀, P₃xP₄, P₄xP₅, P₄xP₆, P₅xP₆ and P₇xP₈ and two checks "US-6214" and "US-6203" exhibited non-significant deviation from regression (S²di) and regression coefficient less than unity (bi <1) and higher mean values as compared to the population mean, were considered suitable and stable under unfavourable environments. Fourteen hybrids viz., P₁xP₆, P_1xP_9 , P_2xP_4 , P_2xP_5 , P_2xP_6 , P_2xP_8 , P_2xP_9 , P_3xP_5 , P_3xP_6 , P_3xP_8 , P₄xP₉, P₅xP₉, P₆xP₇ and P₆xP₈ exhibited non-significant deviation from regression (S²di) and regression coefficient greater than unity (bi >1) with higher mean values as compared to the population mean. These hybrids and checks were found stable in favourable environments. Similar findings on yield and its contributing traits as reported by Varalakshmi et al. (1998) [16] and Narayanankutty et al. $(2005)^{[10]}$.

Vine length (cm)

Predictable behaviour was observed by 47 genotypes out of 58 genotypes these genotypes include 6 parents 38 hybrids and 3 checks (Table 9). Out of above 13 parents, three parents viz., P_1 , P_2 P_8 , P_9 and P_{10} showed non-significant deviation from regression (S²di) and regression coefficient greater than unity (bi >1) with higher mean values than the population

mean. These parents were therefore stable in favourable environments respectively. Seven hybrids viz., P_1xP_7 , P_1xP_8 , P_3xP_4 , P_3xP_5 , P_4xP_9 , P_4xP_{10} and P_6xP_{10} exhibited nonsignificant deviation from regression (S²di) and regression coefficient less than unity (bi <1) with higher mean values than the population mean, thereby indicating their suitability and stability under unfavourable environments. Eighteen hybrids viz., P_1xP_2 , P_1xP_5 , P_1xP_6 , P_1xP_{10} , P_2xP_4 , P_2xP_5 , P_2xP_6 , P_2xP_{10} , P_3xP_6 , P_3xP_7 , P_3xP_8 , P_3xP_9 , P_3xP_{10} , P_4xP_5 , P_4xP_6 , P_6xP_7 , P_6xP_8 and P_6xP_9 exhibited non-significant deviation from regression (S²di) and regression coefficient greater than unity (bi >1) with higher mean values than the population mean. These hybrids were therefore considered suitable and stable in favourable environments.

Days to maturity

Non-significant deviation from regression (S²di) was depicted by 16 genotypes indicating their predictable behaviour for days to maturity (Table 10). Out of above 10 parents, a lines viz., P7 exhibited non-significant deviation from regression (S²di) and regression coefficient greater than unity (bi <1) with lower mean value than the population mean. Thus, it indicated its stability under unfavourable environments for early maturity. Among the hybrids, P1xP7 exhibited nonsignificant S²di and regression coefficient lower than unity (bi <1) with lower mean value than the population mean. It thus indicated their stability under poor environment for early maturity. Check US-6214 exhibited non-significant deviation from regression (S²di) and regression coefficient greater than unity (bi >1) with mean value less than the population mean. It thus indicated its stability under favourable environments for early maturity.

Total soluble solids (%)

In case of TSS 40 genotypes (9 parents, 28 hybrids and 3 checks) out of 58 genotypes exhibited non-significant deviation from regression (S²di), indicating their predictable behavior (Table 10). Five parents viz., P1, P2, P3, P4 and P5 exhibited non-significant deviation from regression (S²di) and regression coefficient less than unity (bi <1) with higher mean values as compared to the population mean, were considered suitable and stable under unfavourable environments. One parent viz., P9 showed non-significant deviation from regression (S²di) and regression coefficient greater than unity (bi >1) with higher mean values than the population mean. These parents were therefore considered suitable and stable in favourable environments. Eight hybrids viz., P₁xP₉, P₂xP₅, P₂xP₉, P₅xP₆, P₆xP₁₀, P₇xP₈, P₇xP₉, P₈xP₉ and two check "US-6214 & US-6203" exhibited non-significant deviation from regression (S²di) and regression coefficient less than unity (bi <1) with higher mean values as compared to the population mean, were considered suitable and stable under unfavourable environments. Ten hybrids viz., P₁xP₂, P₁xP₈, P₂xP₆, P₃xP₁₀, P_4xP_8 , P_4xP_{10} , P_6xP_8 , P_6xP_9 , P_7xP_{10} , P_9xP_{10} and one check namely "Jhalri" exhibited non-significant deviation from regression (S²di) and regression coefficient more than unity (bi >1) with higher mean values than the population mean. These hybrids and check were therefore considered suitable and stable under favourable environments.

Ascorbic acid content (mg/100g)

A perusal of data for this character revealed that 29 genotypes (3 parents, 23 hybrids and 3 checks) showed non-significant deviation from regression (S²di) indicating their predictable behaviour for ascorbic acid content (Table 11). Fourteen

hybrids viz., P_2xP_6 , P_2xP_{10} , P_3xP_8 , P_3xP_9 , P_4xP_7 , P_4xP_8 , P_4xP_9 , P_5xP_9 , P_6xP_7 , P_6xP_9 , P_7xP_8 , P_9xP_{10} and three checks- Jhalri, US-6214 and US-6203 exhibited non-significant deviation from regression (S^2 di) and regression coefficient greater than unity (bi >1) with higher mean values than the population mean. These genotypes thus showed its suitability and stability under favourable environments. Seven hybrids P_3xP_7 , P_3xP_{10} , P_4xP_{10} , P_5xP_8 , P_6xP_8 , P_8xP_9 and P_8xP_{10} showed non-significant S^2 di and regression coefficient nearly equal to unity (bi =1) with higher mean values than the population mean. This hybrid was thus stable and suitable in performance under different environments for ascorbic acid content.

The significant G x E interaction for yield and fruit quality traits were reported by Das *et al.* (2005) [3] and Dijkhuizen and Staub (2002) [5] in cucumber and in watermelon by Dia

(2012) [4]. Mean squares due to pooled deviation (non-linear) were significant for all the characters except for sex ratio and T.S.S. Thus, suggested that linear and non –linear components played important role in building up of total G x E interactions for these traits. Pooled analysis of variance for growth, earliness and yield and quality traits across the three locations was recorded by Vasanthkumar *et al.* (2012) [17] in watermelon. Ceccarelli (1989) [2] expressed that higher attention should be given to the assessment of yield stability. Similar findings for identification of genotypes for their stability under varying environmental conditions were also reported by Krishnaprasad and Singh (1992) [8], Rajput *et al.* (1994) [13] in bitter gourd for yield and its component and in watermelon by Dia (2012) [4]. In cucumber by Singh and Ram (2012) [15].

Table 1: Analysis of variance Eberhart and Russel (1966)

S. N	Characters	Genotype	E+(G x E)	E (L)	G x E (L)	Pool dev.	Pool Err
		[57]	[174]	[1]	[57]	[116]	[456]
1	Days to anthesis of first male flower	13.03**	4.86**	0.00	4.58**	5.05**	1.25
2	Days to anthesis of first female flower	10.79**	9.68**	0.01	13.20**	8.03**	1.08
3	Node number at which I female flower appeared	0.89	0.91	0.00	1.03	0.86	0.88
4	Number of male flowers per vine	578.30**	65.83**	0.06	103.69**	47.79**	17.53
5	Number of female flowers per vine	7.33**	1.98**	0.00	0.91	2.52**	1.13
6	Number of primary branches	0.41**	1.88**	0.09	5.64**	0.06	0.17
7	Number of fruits per vine	5.18**	2.81**	0.00	1.33*	3.57**	0.94
8	Fruit length (cm)	27.21**	6.03**	0.21	14.83**	1.75**	0.94
9	Fruit weight (g)	725.64**	33.77**	0.55	85.43**	8.66**	6.10
10	Fruit diameter (cm)	1.46**	0.90**	0.04	2.57**	0.09**	0.04
11	Specific gravity (g/cc)	0.00**	0.00**	0.00	0.00**	0.00**	0.00
12	Number of seeds per fruit	38.77**	11.55**	0.00	12.16**	11.34**	0.72
13	Yield per vine (kg)	0.33**	0.03**	0.00	0.07**	0.01	0.01
14	Vine length (cm)	3689.04**	4040.64**	166.51	11396.56**	459.49**	198.82
15	Days to maturity	52.35**	21.50**	0.01	25.05**	19.94**	1.85
16	Total soluble solids (%)	0.29**	0.03**	0.00	0.05**	0.02**	0.00
17	Ascorbic acid (mg/100g)	39.77**	3.39**	0.03	4.05**	3.10**	0.35

^{*, **} Significant at 5% and 1% respectively.

Table 2: Stability of different parents, hybrids and checks for various traits on bitter gourd

Characters	Average environments (bi=1)	Unfavourable environments (bi <1)	Favourable environments (bi >1)
Days to anthesis of first male flower	$P_8 \times P_9$	-	-
Days to anthesis of first female flower	-	-	-
Node at which first female flower appeared	-	P1 x P7, P1 x P8, P3 x P4, P4 x P5, P4 x P6, P6 x P9, P7 x P8 and P7 x P9	P1 x P2, P1 x P10, P2 x P3, P2 x P4, P5 x P8, P6 x P10 and check US-6214 & US-6203
Number of male flower per vine	-	P1 x P3 and P1 x P6	P2 x P3 and P2 x P4
Number of female flower per vine	-	P2 x P3, P2 x P5, P2 x P7, P4 x P7, P4 x P9, P5 x P6, P6 x P7, P6 x P9, P6 x P10 and P7 x P9	P3 x P5, P3 x P8, P3 x P10, P4 x P5, P4 x P10, P5 x P9, P5 x P10 and P6 x P8
Number of primary branches	-	P3 x P5, P4 x P6, P4 x P7, P4 x P9, P5 x P10 and P6 x P8	-
Number of fruits per vine	-	P1 x P5, P2 x P7, P4 x P5 and P6 x P10	P1 x P9, P2 x P6, P2 x P8, P2 x P9, P3 x P4, P3 x P6, P3 x P7, P3 x P10, P4 x P7, P4 x P9, P5 x P7, P5 x P9, P5 x P10, P6 x P7, P6 x P8, P6 x P9 and P7 x P9
Fruit length (cm)	-	P2 x P4, P2 x P7, P3 x P4, P3 x P7, P3 x P10, P4 x P7, P4 x P10, P5 x P9, P6 x P8, P6 x P9, P6 x P10 and Chech Jhalri	P1 x P3, P1 x P4, P1 x P9, P2 x P3, P2 x P9, P2 x P10, P3 x P5, P3 x P6, P4 x P8, P4 x P10, P5 x P8, P5 x P10 and P6 x P9

Table 3: Stability parameters for days to anthesis of first male flower and days to anthesis of first female flower [Eberhart and Russel (1966)]

SN	Genotype	Days	to anthesis of first	male flower Days to anthesis of first female flower			
		μ_{i}	$\mathbf{b_{i}}$	S^2d_i	μi	$\mathbf{b_{i}}$	S^2d_i
1	P1	43.00	-1.31	3.328*	58.67	9.65	10.506**
2	P2	43.83	3.60	1.292	59.67	-0.34	-0.894
3	P3	44.92	-2.65	4.864**	59.92	1.44	25.313**
4	P4	44.17	-2.67	-0.135	58.17	1.20	9.861**
5	P5	43.33	-1.63	7.440**	57.25	3.30	4.023**

6	P6	43.42	0.27	0.229	56.92	1.71	6.053**
7	P7	46.25	3.97	3.067*	58.67	-0.67	0.005
8	P8	45.17	-0.25	7.022**	60.58	-0.35	4.145**
9	P9	43.42	-2.77	6.453**	59.50	1.99	3.301*
10	P10	45.83	3.04	5.836**	57.42	9.17**+	-0.622
11	P1 x P2	45.67	6.47	11.983**	59.17	5.35	4.531**
12	P1 x P3	44.42	5.53	2.450	61.92	-0.05	-0.039
13	P1 x P4	43.83	7.03**++	-1.187	61.83	-1.17	-0.116
14	P1 x P5	47.33	-4.46	-0.566	61.33	-5.29+	0.104
15	P1 x P6	48.00	2.54	1.663	59.67	-1.34	4.360**
16	P1 x P7	46.08	5.45	14.434**	59.92	6.24*+	-0.799
17	P1 x P8	45.83	2.54	6.612**	59.50	2.40	2.968*
18	P1 x P9	45.58	-7.24	6.450**	61.17	-2.04	6.120**
19	P1 x P10	44.58	-6.19	0.541	61.42	-3.53	2.526*
20	P2 x P3	44.17	-5.15	5.929**	61.83	-0.31	-0.055
21	P2 x P4	48.25	0.04	-1.096	59.75	2.64	-0.093
22	P2 x P5	47.00	3.97	6.577**	58.33	1.23	21.115**
23	P2 x P6	47.08	6.35	9.857**	60.08	-1.04	7.738**
24		46.17				0.38	
	P2 x P7		4.36	6.480**	60.33		0.764
25	P2 x P8	46.92	4.71	1.421	61.42	-0.27	0.939
26	P2 x P9	47.58	2.45	-0.463	61.17	2.24	6.746**
27	P2 x P10	45.00	-0.41	10.065**	59.50	3.58	5.424**
28	P3 x P4	46.50	4.60	1.778	60.17	1.41	8.246**
29	P3 x P5	46.92	3.69	7.538**	57.17	-0.49	5.123**
30	P3 x P6	44.58	-2.33	11.050**	55.83	-5.59	30.138**
31	P3 x P7	44.17	5.53	2.348	58.00	3.10	13.923**
32	P3 x P8	47.42	5.04	8.825**	60.50	2.59	9.339**
33	P3 x P9	48.83	0.31	-1.204	61.25	0.49	7.221**
34	P3 x P10	48.92	0.22	-1.213	60.00	5.10	8.832**
35	P4 x P5	44.50	-4.43	0.959	59.33	-0.22	31.239**
36	P4 x P6	44.25	-7.14	14.171**	58.75	-4.63	4.633**
37	P4 x P7	48.17	1.42	-0.873	55.50	-4.83	7.280**
38	P4 x P8	45.92	5.27*+	-1.118	58.50	-5.14	5.659**
39	P4 x P9	47.75	2.39	3.125*	59.58	-0.84	4.076**
40	P4 x P10	47.75	-0.08	0.237	61.25	-5.84	0.815
41	P5 x P6	48.00	1.44	0.622	61.50	-1.36	2.955*
42	P5 x P7	47.25	-1.82	0.852	61.08	2.36	0.783
43	P5 x P8	46.17	4.01	15.817**	59.75	-0.57	4.972**
44	P5 x P9	47.42	-3.79	-0.222	59.08	4.99	20.342**
45	P5 x P10	47.67	0.95	3.979*	58.67	10.04	11.574**
46	P6 x P7	48.42	0.35	-0.888	59.00	5.32	12.224**
47	P6 x P8	45.50	7.97	-0.173	61.17	1.18	1.652
48	P6 x P9	43.75	9.73	0.063	59.58	-4.78	0.201
49	P6 x P10	43.33	0.77	2.682*	60.33	-11.71**++	-0.869
50	P7 x P8	44.50	-5.42	11.828**	61.00	0.00	-1.080
51	P7 x P9	45.08	-5.00	7.873**	60.50	-4.10	39.203**
52	P7 x P10	46.58	-4.65	1.271	59.58	-1.19	6.854**
53	P8 x P9	48.50	1.06	-0.768	61.17	1.63	1.265
I I	P8 x P10	47.50	-6.17**++	-1.193	59.00	-1.11	20.649**
54			2.20	4.420*	58.67	8.22	21.925**
54 55	P9 x P10	47.17	3.28	4.438*	36.07	8.22	21.923
-	P9 x P10 Check 1	47.17 45.00	-1.09	6.279**	59.08	8.22 11.14*+	1.666
55							

Table 4: Stability parameters for node number at which I female flower appeared and number of male flowers per vine [Eberhart and Russel (1966)]

SN	Genotype	Node num	ber at which I female flo	wer appeared	Number of male flowers per vine			
		μi	bi	S^2d_i	μi	bi	S^2d_i	
1	P1	11.00	9.82	-0.610	120.25	0.35	-15.914	
2	P2	11.33	-9.19*+	-0.852	121.08	-0.41	-14.987	
3	P3	11.25	10.86	-0.398	120.08	-0.90	-6.066	
4	P4	11.33	-5.92	0.524	119.17	-1.21	-15.812	
5	P5	11.25	8.97	0.887	122.25	2.36	-15.468	
6	P6	11.33	-13.85	0.665	123.83	-2.45*+	-17.125	
7	P7	10.92	-2.86	0.437	120.67	0.26	-10.192	
8	P8	11.42	-3.05	0.428	121.50	0.56	-12.104	
9	P9	11.33	1.38	0.776	124.08	2.00	0.127	

^{*, **} Significantly deviating from zero at 5% and 1% respectively, +, ++ Significantly deviating from unity at 5% and 1% respectively.

1.0	D10	10.77	101	0.101	101.70	1.70	4 ===
10	P10	10.75	-1.04	0.491	121.50	-1.52	-4.775
11	P1 x P2	11.08	1.60	-0.632	129.42	10.87	170.568**
12	P1 x P3	11.17	0.57	0.177	142.00	0.38	30.896
13	P1 x P4	11.33	-0.76	0.342	143.00	-8.01	66.449**
14	P1 x P5	11.33	-2.64	-0.707	143.42	5.88	191.193**
15	P1 x P6	11.58	4.31	-0.309	142.17	-11.73*+	3.904
16	P1 x P7	10.83	-0.69	0.287	145.92	-0.55	-3.549
17	P1 x P8	11.08	-8.84	0.126	145.25	9.54*+	-14.212
18	P1 x P9	11.25	2.93	-0.566	148.50	5.06	46.929*
19	P1 x P10	11.00	5.29	-0.200	144.83	-1.09	184.311**
20	P2 x P3	10.92	7.58	-0.605	137.00	12.17	101.176**
21	P2 x P4	11.00	2.64	0.960	138.92	9.46	30.040
22	P2 x P5	11.83	-0.69	-0.713	150.25	-1.84	90.398**
23	P2 x P6	11.50	7.11	0.350	153.25	-1.18	-1.480
24	P2 x P7	12.08	-6.20	-0.349	154.92	-0.67	5.995
25	P2 x P8	11.75	14.07*+	-0.785	151.58	-5.07	46.745*
26	P2 x P9	11.75	-10.86	1.602	151.75	-8.59	101.461**
27	P2 x P10	11.58	-1.60	-0.632	143.25	6.00	-7.927
28	P3 x P4	11.08	-0.41	-0.058	149.42	2.86	39.487*
29	P3 x P5	11.42	8.28	0.978	149.58	1.43	3.081
30	P3 x P6	10.67	3.40	0.925	154.75	-2.14	-3.856
31	P3 x P7	11.50	-1.32	-0.834	156.92	-2.07	-14.198
32	P3 x P8	11.42	4.88	-0.015	152.42	2.54	2.936
33	P3 x P9	12.25	-4.88	-0.015	148.50	6.47*	-10.597
34	P3 x P10	11.17	1.95	-0.738	146.75	0.43	20.199
35	P4 x P5	11.08	-3.56	-0.153	150.33	-0.02	20.474
36	P4 x P6	10.75	-17.40*+	-0.695	152.00	-0.43	41.498*
37	P4 x P7	11.75	-6.33	0.417	154.50	-4.64	-4.120
38	P4 x P8	11.17	11.14**++	-0.876	151.92	0.68	-17.374
39	P4 x P9	11.83	-1.32	-0.167	156.83	-0.28	-15.378
40	P4 x P10	11.25	-0.85	1.493	152.17	-0.81	13.538
41	P5 x P6	12.33	0.00	-0.765	156.08	0.29	-16.289
42	P5 x P7	11.33	10.45	-0.596	155.00	-0.23	-15.837
43	P5 x P8	10.92	2.42	2.121*	154.67	-0.46+	-17.207
44	P5 x P9	11.83	4.59*+	-0.870	156.92	-1.92	-13.680
45	P5 x P10	12.25	-3.12	2.425*	154.50	0.57	-17.455
46	P6 x P7	11.67	-9.06	0.610	153.83	0.88	0.912
47	P6 x P8	11.33	-11.83	-0.719	151.25	-0.43	-4.356
48	P6 x P9	11.00	-6.55*++	-0.869	149.75	-0.12	-10.732
49	P6 x P10	10.92	6.20	-0.794	155.33	-1.33	4.295
50	P7 x P8	10.92	-14.70	-0.589	154.08	-0.57	12.863
51	P7 x P9	10.92	0.91	-0.285	149.58	0.01	-15.151
52	P7 x P10	11.92	10.10	-0.500	142.17	16.00	549.276**
53	P8 x P9	11.50	5.98	-0.093	132.33	22.54	129.870**
54	P8 x P10	12.58	-1.73	0.143	152.75	2.97	-14.262
55	P9 x P10	11.42	10.92	0.480	151.33	2.01*	-17.274
56	Check 1	11.75	22.63*+	-0.730	152.75	-0.89	-5.492
57	Check 2	10.50	22.97	-0.281	150.92	-1.41	104.400**
58	Check 3	10.00	5.29	-0.533	147.08	-3.58	94.968**
			om zero at 5% and 1% respe		177.00	-3.30	77.700
			rom unity at 5% and 1% responses				
т, т	- Significali	my devianing in	ioni unity at 570 and 170 lesp	occuvery.			

Table 5: Stability parameters for number of female flowers per vine and number of primary branches [Eberhart and Russel (1966)]

SN	Genotype	Nur	nber of female flowe	ers per vine	Number of primary branches			
		μ_{i}	b _i	S^2d_i	μ_{i}	$\mathbf{b_{i}}$	S^2d_i	
1	P1	20.58	-1.19	1.886	4.40	0.94**	-0.163	
2	P2	20.17	-3.68	-0.871	4.71	0.63**++	-0.168	
3	P3	21.33	-5.20	-0.831	4.83	0.73**++	-0.169	
4	P4	21.08	-2.71	0.114	4.54	0.77**++	-0.168	
5	P5	21.17	-0.22	0.035	4.22	0.79*	-0.017	
6	P6	21.00	6.92	-0.313	5.01	0.89**+	-0.169	
7	P7	19.58	-1.62	1.753	4.82	0.73*	-0.102	
8	P8	21.50	-5.41	2.628*	4.89	0.79**+	-0.164	
9	P9	20.83	-1.52	-1.116	4.89	0.49**++	-0.162	
10	P10	21.92	-3.36	-0.622	4.39	0.64**++	-0.165	
11	P1 x P2	20.92	2.70	0.781	5.50	1.03**	-0.167	
12	P1 x P3	21.83	1.51	1.773	5.12	1.57**+	-0.137	
13	P1 x P4	20.50	-5.85**++	-1.125	5.08	1.25**+	-0.160	
14	P1 x P5	20.92	6.60	-0.860	5.55	1.08**	-0.168	
		•		706				

15	P1 x P6	20.08	0.32	21.242**	4.85	0.76*	-0.063
16	P1 x P0	21.00	-1.30	1.617	4.83	1.14**	-0.003
17	P1 x P7	22.08	-1.30 -8.77**++	-1.116	4.96	1.08**	-0.134
18	P1 x P9	21.75		-0.134	5.31	1.16**	-0.108
19			6.82		5.20		
-	P1 x P10	21.17	6.71	1.906		1.35*	-0.064
20	P2 x P3	22.00	0.86	-0.811	5.48	1.01**	-0.163
21	P2 x P4	21.42	2.05	-1.053	5.27	1.27*	0.074
22	P2 x P5	23.50	-4.55	0.003	5.04	1.06*	0.105
23	P2 x P6	21.75	-0.54	-0.983	4.93	0.97*	0.074
24	P2 x P7	21.67	-3.90	0.045	5.48	1.01**	-0.163
25	P2 x P8	21.33	-8.23	-0.884	5.03	0.91*	-0.055
26	P2 x P9	21.00	3.03	-0.960	5.14	1.30**+	-0.156
27	P2 x P10	20.75	8.98	0.261	5.32	1.02*	0.080
28	P3 x P4	21.42	2.05	0.281	5.47	1.01*	-0.045
29	P3 x P5	22.50	7.14	5.689**	4.99	0.87**+	-0.166
30	P3 x P6	21.42	1.62	1.975	5.37	1.21**++	-0.170
31	P3 x P7	21.42	2.05	0.169	5.14	1.16**	-0.137
32	P3 x P8	21.58	6.17	4.460**	5.42	1.25**	-0.124
33	P3 x P9	21.25	8.33	3.460*	5.30	1.15**	-0.154
34	P3 x P10	21.67	5.19	2.392*	5.07	1.09**	-0.132
35	P4 x P5	22.42	6.38	-1.033	4.97	1.44*	-0.033
36	P4 x P6	21.50	9.30	0.281	4.99	0.87*	-0.052
37	P4 x P7	22.17	0.65	1.140	5.25	0.96*	0.077
38	P4 x P8	20.92	2.27	1.375	5.21	1.07**+	-0.170
39	P4 x P9	22.42	-3.14	-0.930	5.33	0.87**+	-0.166
40	P4 x P10	21.92	11.79	0.560	5.28	1.42**+	-0.134
41	P5 x P6	23.00	-2.17	0.675	5.01	1.18*	-0.062
42	P5 x P7	21.00	3.03	-1.071	4.85	1.34*	-0.063
43	P5 x P8	21.33	-0.00	-0.686	4.85	0.75**++	-0.170
44	P5 x P9	23.08	8.98	-0.183	5.37	1.21**++	-0.170
45	P5 x P10	22.33	4.33	1.649	5.19	0.76**++	-0.170
46	P6 x P7	23.42	-4.01	-0.262	4.99	1.46**++	-0.161
47	P6 x P8	21.83	8.01	-0.877	5.08	0.95**	-0.160
48	P6 x P9	21.67	-2.17	0.786	5.17	1.04**	-0.169
49	P6 x P10	22.17	-2.38	-0.287	5.37	1.21**++	-0.170
50	P7 x P8	21.25	-1.19	-0.781	5.06	0.94**	-0.166
51	P7 x P9	22.00	-0.00	-1.131	5.17	1.32**++	-0.165
52	P7 x P10	23.50	-1.95	4.413**	5.03	0.61**++	-0.170
53	P8 x P9	22.92	9.63	4.381**	4.86	1.05**++	-0.170
54	P8 x P10	22.42	-3.14	2.403*	5.44	1.27**	-0.137
55	P9 x P10	23.08	-0.54	5.906**	5.65	1.16**	-0.161
56	Check 1	26.17	1.51	8.440**	5.25	0.08++	-0.143
57	Check 2	26.50	0.21	12.702**	4.41	0.51	0.167
58	Check 3	26.58	-8.55	2.283*	4.33	0.43+	-0.099
ala alask	C::C:41		50/ 1 10				

Table 6: Stability parameters for number of fruits per vine and fruit length (cm) [Eberhart and Russel (1966)]

S. N	Genotype	Nui	nber of fru	its per vine]	Fruit length	(cm)
		$\mu_{\rm i}$	$\mathbf{b_{i}}$	S^2d_i	μ_{i}	$\mathbf{b_{i}}$	S^2d_i
1	P1	19.17	0.94	1.666	16.01	-0.09	-0.020
2	P2	19.17	0.71	0.494	17.73	0.91	0.002
3	P3	19.92	1.17	3.251*	17.30	1.32*	-0.411
4	P4	19.83	0.00	1.008	17.65	0.97	-0.013
5	P5	20.25	0.55	2.508*	16.42	1.44	1.987*
6	P6	19.42	-0.67	2.489*	17.01	0.74	-0.541
7	P7	18.50	0.52	3.304*	17.11	0.38	0.798
8	P8	19.00	-0.55	12.245**	17.85	0.10	0.135
9	P9	19.42	1.24	-0.882	17.43	1.22*	-0.414
10	P10	19.83	0.90	0.010	17.26	0.60	1.752
11	P1 x P2	19.08	0.72	-0.299	18.95	1.51	0.751
12	P1 x P3	20.00	3.38	2.950*	19.92	1.47*	-0.388
13	P1 x P4	19.33	1.08	-0.872	19.38	1.86*	1.175
14	P1 x P5	20.17	0.50	-0.248	19.17	1.59	3.021*
15	P1 x P6	18.92	6.28	17.725**	18.51	1.65	1.405
16	P1 x P7	19.83	-0.26	0.110	18.64	1.22*	-0.635
17	P1 x P8	21.00	-1.74	4.097**	18.83	1.13**	-0.796
18	P1 x P9	20.50	2.16	0.038	19.42	1.18	0.843
19	P1 x P10	19.92	3.47	3.241*	18.75	1.53*	-0.498

^{*, **} Significantly deviating from zero at 5% and 1% respectively, +, ++ Significantly deviating from unity at 5% and 1% respectively.

	T			T			
20	P2 x P3	19.75	1.36	-0.369	18.36	1.95**+	-0.641
21	P2 x P4	19.75	0.97	0.087	20.18	0.53	-0.233
22	P2 x P5	19.67	1.72	-0.560	18.63	0.90*	-0.507
23	P2 x P6	20.33	1.97	-0.131	19.11	1.05	5.922**
24	P2 x P7	20.00	0.94	-0.280	19.76	0.52	0.598
25	P2 x P8	20.50	1.92	1.504	18.59	1.12	1.009
26	P2 x P9	20.08	1.75	-0.421	19.32	1.93**+	-0.665
27	P2 x P10	19.67	0.56	0.466	19.70	1.03	2.362*
28	P3 x P4	19.92	1.94	-0.296	20.35	0.75	1.021
29	P3 x P5	20.92	3.22	2.360*	20.00	1.24*	-0.180
30	P3 x P6	20.17	2.68	1.361	18.76	1.36	1.797
31	P3 x P7	20.25	2.19	0.228	19.25	0.87	1.089
32	P3 x P8	19.92	3.59	4.793**	18.92	0.96	3.316*
33	P3 x P9	19.42	2.37	3.117*	20.04	1.30	2.302*
34	P3 x P10	20.08	2.64	1.157	20.01	0.72	1.336
35	P4 x P5	21.00	0.82	-0.918	19.34	0.53	6.358**
36	P4 x P6	18.92	1.03	1.071	19.97	1.15	3.818**
37	P4 x P7	20.00	1.97	-0.131	20.31	0.99**	-0.898
38	P4 x P8	19.33	4.14	5.838**	19.80	1.03	1.208
39	P4 x P9	20.58	1.69	-0.615	19.45	1.23	2.901*
40	P4 x P10	19.75	1.23	0.678	20.42	0.59	1.548
41	P5 x P6	21.25	-1.77	4.124**	20.39	1.40	2.820*
42	P5 x P7	20.25	1.55	-0.445	19.36	1.08	7.170**
43	P5 x P8	19.58	1.81	0.106	20.35	1.42**+	-0.857
44	P5 x P9	20.17	2.03	0.447	21.53	0.56*	-0.759
45	P5 x P10	20.58	2.46	0.948	19.44	1.67**+	-0.828
46	P6 x P7	19.92	2.33	0.257	19.08	0.84**+	-0.921
47	P6 x P8	20.25	2.19	0.228	19.33	0.93*	-0.586
48	P6 x P9	20.42	2.39	0.441	20.84	1.03*	-0.530
49	P6 x P10	20.75	0.21	-0.457	21.52	0.40	-0.232
50	P7 x P8	19.58	1.42	0.387	20.46	0.35*+	-0.870
51	P7 x P9	20.33	1.97	-0.131	20.80	0.62*	-0.762
52	P7 x P10	21.25	-2.91	9.283**	21.04	0.45	-0.427
53	P8 x P9	20.67	-2.50	7.326**	21.03	0.44	-0.365
54	P8 x P10	20.92	-1.75	5.687**	21.00	0.70*	-0.857
55	P9 x P10	21.83	-2.29	10.072**	21.09	0.79	-0.481
56	Check 1	23.67	-4.31	21.644**	35.96	-0.06	3.998**
57	Check 2	24.67	-4.16	16.703**	15.97	1.36*	-0.099
58	Check 3	24.25	-1.77	4.124**	16.01	1.50*	0.248
* ** 0	.c. 11 1 .		4.50/	1.10/	•		•

Table 7: Stability parameters for fruit weight (g) and fruit diameter (cm) [Eberhart and Russel (1966)]

SN	Genotype		Fruit weigh	t (g)		Fruit diameter	(cm)
		μ_{i}	b _i	S^2d_i	μ_{i}	b _i	S^2d_i
1	P1	87.33	-0.06+	-5.721	5.78	1.25**	-0.002
2	P2	90.08	0.46	4.408	6.17	1.10**+	-0.037
3	P3	93.83	-0.28+	-3.958	6.23	0.75**++	-0.037
4	P4	87.67	4.07	27.682**	6.27	0.35+	-0.012
5	P5	60.75	0.64	-3.651	5.77	1.23**	-0.016
6	P6	59.00	1.58*	-2.756	6.08	0.77**++	-0.037
7	P7	59.50	-0.47	-0.248	6.17	0.66**++	-0.038
8	P8	95.75	-0.68+	-4.747	6.35	0.68**++	-0.037
9	P9	91.92	1.78	5.795	6.51	0.77	0.319**
10	P10	84.67	5.15	73.883**	6.23	0.75	0.065
11	P1 x P2	87.17	-0.42	9.115	6.61	1.56	0.335**
12	P1 x P3	91.58	2.83	31.426**	6.61	1.58*	0.272**
13	P1 x P4	84.50	0.61	-4.785	6.33	1.26	0.392**
14	P1 x P5	90.75	4.75	113.728**	6.53	1.37	0.514**
15	P1 x P6	89.58	1.31**+	-5.973	6.55	0.68	0.022
16	P1 x P7	85.58	0.65	-3.344	6.38	1.44*	0.013
17	P1 x P8	106.33	1.05*	-5.578	6.68	0.90*	-0.004
18	P1 x P9	101.00	1.14**+	-6.092	6.99	0.89**+	-0.037
19	P1 x P10	76.67	0.87	1.669	6.96	0.85**++	-0.038
20	P2 x P3	86.00	0.29	8.896	7.02	1.03**	-0.037
21	P2 x P4	97.42	2.19**+	-4.867	6.04	0.86	1.583**
22	P2 x P5	87.75	0.54	-5.557	6.18	1.30**++	-0.037
23	P2 x P6	87.50	1.25	-2.695	6.40	0.92**+	-0.037
24	P2 x P7	79.75	0.23+	-5.545	6.97	1.10**+	-0.037

^{*, **} Significantly deviating from zero at 5% and 1% respectively, +, ++ Significantly deviating from unity at 5% and 1% respectively.

25	P2 x P8	85.08	0.47	-4.809	6.98	1.08**+	-0.037
26	P2 x P9	96.33	1.76*	-2.766	6.65	0.51**++	-0.038
27	P2 x P10	86.00	1.28	-1.867	7.03	0.83**++	-0.037
28	P3 x P4	81.17	-0.40+	-3.641	6.62	1.08**+	-0.037
29	P3 x P5	96.50	1.22*	-4.065	6.48	1.08**+	-0.037
30	P3 x P6	92.25	1.10	0.339	6.92	1.12**+	-0.037
31	P3 x P7	77.17	0.78	-4.681	7.03	0.83**++	-0.037
32	P3 x P8	87.00	-0.06	5.295	7.08	1.16**++	-0.037
33	P3 x P9	71.00	2.22*+	-4.288	6.93	0.83**++	-0.037
34	P3 x P10	60.08	1.24	-2.753	6.47	1.10**+	-0.037
35	P4 x P5	85.67	0.22+	-5.446	6.42	1.08**+	-0.037
36	P4 x P6	85.67	0.16	-4.372	6.85	1.34**	-0.001
37	P4 x P7	75.42	0.19	-4.659	6.45	1.09	0.340**
38	P4 x P8	77.17	1.34	-2.427	6.21	0.78**+	-0.034
39	P4 x P9	86.25	0.76**	-5.997	6.77	0.92*	0.009
40	P4 x P10	60.83	0.66	-3.783	6.90	1.23*	0.066
41	P5 x P6	82.00	-0.04+	-4.686	6.95	0.99**	-0.037
42	P5 x P7	68.42	0.98	-0.961	6.82	1.12*	0.041
43	P5 x P8	68.50	1.43	2.023	6.93	1.15*	-0.005
44	P5 x P9	85.17	0.20++	-6.002	6.58	1.56**+	0.000
45	P5 x P10	46.08	-0.63+	-3.214	6.52	1.34**++	-0.037
46	P6 x P7	82.67	0.16+	-5.056	6.77	1.01**	-0.037
47	P6 x P8	85.08	0.22+	-5.260	6.35	1.25**++	-0.037
48	P6 x P9	56.58	0.10+	-5.446	6.85	0.86**++	-0.037
49	P6 x P10	60.58	1.33*	-3.841	6.58	1.47**++	-0.037
50	P7 x P8	83.92	0.33	-3.404	6.67	1.32**++	-0.037
51	P7 x P9	78.17	0.30	-3.072	7.03	0.97**	-0.037
52	P7 x P10	61.33	0.72*	-5.432	6.48	1.08**+	-0.037
53	P8 x P9	57.67	1.56*	-2.774	6.83	1.01**	-0.037
54	P8 x P10	63.83	0.08	-0.824	6.85	1.12**+	-0.037
55	P9 x P10	85.67	5.46	50.170**	6.88	1.03**	-0.037
56	Check 1	102.58	1.49*	-4.525	4.05	0.26	0.041
57	Check 2	64.08	0.80	-4.704	4.54	0.26	0.162**
58	Check 3	68.08	1.06*	-5.407	4.36	0.10+	-0.010
4 44	CC. 41 1	·	4.50/	1 10/ respectively			•

Table 8: Stability parameters for specific gravity and number of seeds per fruit [Eberhart and Russel (1966)]

SN	Genotype	Specific gravity (g/cc)			Number of seeds per fruit		
		μ_{i}	$\mathbf{b_{i}}$	S^2d_i	μ_{i}	$\mathbf{b_{i}}$	S^2d_i
1	P1	0.95	0.96**	-0.000	19.50	4.40	0.471
2	P2	0.91	1.20	0.000	17.17	-4.25	1.068
3	P3	0.93	1.25	0.000	19.25	-13.00	13.721**
4	P4	0.96	1.70	0.001**	20.42	-18.21	35.007**
5	P5	0.99	0.86	-0.000	20.00	-7.90	16.213**
6	P6	0.98	0.66	0.000	23.17	2.55	27.563**
7	P7	0.96	0.51	0.000*	23.67	23.23	19.077**
8	P8	0.94	1.57	0.002**	19.33	24.07**+	-0.348
9	P9	0.97	-0.18	0.001**	16.83	0.90	-0.582
10	P10	0.94	1.91	0.003**	17.75	0.19	4.651**
11	P1 x P2	1.01	1.00*	-0.000	21.42	-7.39	6.066**
12	P1 x P3	1.00	0.52	-0.000	25.50	-12.06	3.960**
13	P1 x P4	0.99	0.94	-0.000	28.42	-10.92*++	-0.629
14	P1 x P5	0.98	0.30	0.001**	27.92	6.29	12.119**
15	P1 x P6	0.94	0.59	0.000*	23.08	1.35	-0.407
16	P1 x P7	0.92	1.34	0.000	22.75	-2.24	0.153
17	P1 x P8	0.94	1.24	-0.000	24.75	-4.03	2.114*
18	P1 x P9	0.96	1.04*	-0.000	27.50	-2.69	0.538
19	P1 x P10	0.96	1.04**	-0.000	27.50	7.81	1.757*
20	P2 x P3	0.97	1.44	0.000	26.00	0.26	8.275**
21	P2 x P4	0.98	0.76	-0.000	23.42	-9.50	21.885**
22	P2 x P5	0.99	1.05	-0.000	23.42	30.62	34.384**
23	P2 x P6	0.99	0.71	-0.000	20.42	16.94	10.931**
24	P2 x P7	0.97	0.52	0.001**	21.17	4.46	10.454**
25	P2 x P8	0.95	1.08*	-0.000	20.00	-2.26	2.887**
26	P2 x P9	0.94	0.81	0.000**	18.92	-16.85	11.696**
27	P2 x P10	0.97	1.48	0.000	20.58	-14.71	39.378**
28	P3 x P4	0.98	0.78	0.000	19.08	-9.13	7.895**
29	P3 x P5	0.99	0.81	0.000*	21.67	-19.12	7.728**

^{*, **} Significantly deviating from zero at 5% and 1% respectively, +, ++ Significantly deviating from unity at 5% and 1% respectively.

20	D2 D6	0.07	1 12	0.001**	10.92	11.74	1 077*
30	P3 x P6	0.97	1.13	0.001**	19.83	-11.74	1.877*
31	P3 x P7	0.98	-0.09	0.002**	23.92	-23.97	9.968**
32	P3 x P8	0.93	1.15	-0.000	23.25	2.47	2.228*
33	P3 x P9	0.92	0.97	0.000*	24.25	5.92	31.271**
34	P3 x P10	0.95	1.32	-0.000	23.42	23.42	6.828**
35	P4 x P5	0.95	0.46	0.000	20.33	12.38*+	-0.465
36	P4 x P6	0.95	0.97	0.001**	19.67	29.54*+	2.059*
37	P4 x P7	0.94	1.72	0.001**	20.25	2.10	23.285**
38	P4 x P8	0.94	0.88	0.002**	19.42	6.26	9.909**
39	P4 x P9	0.93	2.51	0.001**	21.75	-16.18	35.757**
40	P4 x P10	0.94	1.08	0.001**	19.67	-10.24	14.028**
41	P5 x P6	0.96	1.11	0.001**	20.83	9.11	1.583*
42	P5 x P7	0.94	-0.57	0.003**	19.83	9.84	7.241**
43	P5 x P8	0.96	0.89	-0.000	20.33	2.75	10.472**
44	P5 x P9	0.97	1.12	-0.000	21.33	-17.93	33.405**
45	P5 x P10	0.99	1.41	0.000**	25.92	7.42	1.718*
46	P6 x P7	0.97	0.64	0.000	26.92	9.24	14.935**
47	P6 x P8	0.97	1.44	0.000	26.42	7.80	11.084**
48	P6 x P9	0.97	1.12	0.000*	24.92	15.90	16.730**
49	P6 x P10	0.98	1.77	0.000	27.58	2.82	9.278**
50	P7 x P8	0.97	0.28	0.000	24.83	16.87	19.359**
51	P7 x P9	0.96	0.98	0.000*	27.67	6.65	12.478**
52	P7 x P10	0.96	1.55	0.000	25.33	-18.63	7.565**
53	P8 x P9	0.98	1.56	0.000*	26.08	-9.53	20.645**
54	P8 x P10	0.97	0.53	0.000	25.83	-17.76	8.222**
55	P9 x P10	0.96	1.64	0.000**	26.17	-10.67	1.561*
56	Check 1	0.98	0.68	0.000	22.58	12.31	4.413**
57	Check 2	0.99	0.72	-0.000	19.83	18.57*+	0.134
58	Check 3	0.97	0.71	-0.000	18.75	24.55*+	0.370
	. C	٠	_	0/ 1.10/			

^{*, **} Significantly deviating from zero at 5% and 1% respectively, +, ++ Significantly deviating from unity at 5% and 1% respectively.

Table 9: Stability parameters for yield (kg) per vine and vine length (cm) [Eberhart and Russel (1966)]

SN	Genotype	Yield per vine (kg)			Vine length (cm)		
		μi	bi	S^2d_i	μi	bi	S^2d_i
1	P1	1.68	0.51	0.006	337.42	1.86**++	-154.541
2	P2	1.73	0.80	0.004	313.58	1.38**	-37.454
3	P3	1.87	-0.71	0.031*	297.92	1.33	2804.899**
4	P4	1.73	2.98*+	-0.006	273.33	0.88	3730.613**
5	P5	1.23	0.50	0.014	268.58	1.02*	233.882
6	P6	1.14	0.55	0.008	274.67	0.91	2008.752**
7	P7	1.10	-0.31	-0.003	316.33	1.37*	785.570**
8	P8	1.82	-1.39	0.111**	319.50	1.31**	-127.958
9	P9	1.79	1.90*	-0.006	339.83	1.73*	288.276
10	P10	1.68	4.38*	0.004	308.42	1.33**	-48.741
11	P1 x P2	1.66	-0.53	0.002	317.92	1.44**+	-133.802
12	P1 x P3	1.95	4.03	0.021*	283.33	0.81	739.858**
13	P1 x P4	1.63	0.59**++	-0.009	276.92	0.51	550.966*
14	P1 x P5	1.99	3.54	0.023*	335.42	1.09*	377.325
15	P1 x P6	1.71	5.06*+	0.004	327.17	1.16*	-68.367
16	P1 x P7	1.69	-0.30++	-0.009	306.75	0.84**+	-192.846
17	P1 x P8	2.23	-1.43+	-0.004	323.67	0.97*	2.432
18	P1 x P9	2.07	2.08*+	-0.008	301.92	0.76	2650.612**
19	P1 x P10	1.53	2.45**+	-0.008	333.50	1.47*	25.682
20	P2 x P3	1.70	0.59	0.005	381.58	1.90*	1464.906**
21	P2 x P4	1.92	1.76	-0.006	316.00	1.12*	-69.099
22	P2 x P5	1.73	1.16*	-0.008	336.92	1.46**+	-105.399
23	P2 x P6	1.79	2.05**+	-0.008	305.83	1.08*	280.004
24	P2 x P7	1.59	0.26	-0.006	319.50	1.18	649.011*
25	P2 x P8	1.75	1.35	0.008	314.00	0.88*	111.338
26	P2 x P9	1.94	2.18**++	-0.009	318.58	0.95	461.003*
27	P2 x P10	1.69	0.71	-0.007	317.92	1.10*	-62.459
28	P3 x P4	1.62	0.49**++	-0.009	319.58	0.97*	-55.332
29	P3 x P5	2.02	2.99*	-0.004	315.00	0.80*	-119.439
30	P3 x P6	1.87	2.36*	-0.005	368.33	1.40**+	-140.098
31	P3 x P7	1.57	1.51**+	-0.009	383.75	1.68**+	-123.536
32	P3 x P8	1.73	1.93*	-0.006	353.75	1.28**+	-157.785
33	P3 x P9	1.38	2.50	0.002	382.50	1.79**++	-194.159
34	P3 x P10	1.21	1.87	-0.005	356.58	1.41*	160.390
				~ 740 ~			

35	P4 x P5	1.80	0.21++	-0.009	326.17	1.22**	-173.932		
36	P4 x P6	1.62	0.17	0.005	327.25	1.34*	-21.920		
37	P4 x P7	1.51	0.94	-0.006	247.25	0.44**++	-185.094		
38	P4 x P8	1.50	3.21**+	-0.008	297.42	0.65*	-125.920		
39	P4 x P9	1.77	1.29**	-0.009	309.92	0.73	218.501		
40	P4 x P10	1.21	0.72	-0.001	302.50	0.70**+	-169.417		
41	P5 x P6	1.74	-1.91+	-0.005	271.67	0.57*+	-134.176		
42	P5 x P7	1.39	1.23*	-0.008	299.25	0.81*	-75.614		
43	P5 x P8	1.35	1.65**+	-0.009	307.67	0.75*	-45.453		
44	P5 x P9	1.72	1.02	-0.004	277.00	0.44	1439.467**		
45	P5 x P10	0.95	0.30	-0.008	299.50	0.78*	-71.409		
46	P6 x P7	1.65	1.28*	-0.009	316.50	1.10**	-131.886		
47	P6 x P8	1.73	1.29	-0.006	312.92	1.01*	-98.752		
48	P6 x P9	1.16	0.91*	-0.009	317.83	1.04**	-145.319		
49	P6 x P10	1.26	0.83	-0.008	309.00	0.75*	-144.004		
50	P7 x P8	1.64	0.66	0.004	276.08	0.48*+	-83.644		
51	P7 x P9	1.59	1.03**	-0.009	287.50	0.57*	-70.036		
52	P7 x P10	1.30	-1.22	-0.003	303.33	0.75*	-101.037		
53	P8 x P9	1.18	-0.34	-0.007	258.58	0.45	25.287		
54	P8 x P10	1.34	-1.10	0.005	270.92	0.64**++	-197.785		
55	P9 x P10	1.84	3.32*	0.001	261.25	0.16*++	-190.991		
56	Check 1	2.42	-3.37	0.023*	315.42	0.50	-7.141		
57	Check 2	1.58	-1.99*+	-0.007	276.33	0.47*+	-111.700		
58	Check 3	1.65	-0.51+	-0.008	274.83	0.48	186.723		
	* ** C' 'C' (1 1 ' ' C								

Table 10: Stability parameters for days to maturity and total soluble solids [Eberhart and Russel (1966)]

SN	Genotype		Days to maturity			Total soluble solids			
		μi	bi	S^2d_i	μi	bi	S^2d_i		
1	P1	70.08	6.98	62.515**	4.45	0.80	-0.003		
2	P2	66.08	-2.05	22.556**	4.17	0.80	-0.003		
3	P3	66.58	-4.16	57.488**	3.60	0.80	-0.003		
4	P4	68.75	5.94	42.563**	4.04	0.80	-0.003		
5	P5	72.00	0.33	2.116	4.17	0.80	-0.003		
6	P6	67.50	-5.50	33.265**	4.37	0.80	-0.003		
7	P7	62.83	-0.42	-0.737	3.87	0.80	-0.003		
8	P8	66.50	-2.91	99.800**	3.59	0.83	-0.002		
9	P9	68.92	15.55	16.566**	4.66	1.60*	-0.004		
10	P10	66.75	1.32	19.875**	4.43	4.84	0.024**		
11	P1 x P2	73.00	-0.21	5.470*	4.16	2.25	-0.003		
12	P1 x P3	75.83	3.77	1.015	3.86	4.65	0.063**		
13	P1 x P4	76.17	1.97	3.884*	3.62	-1.49	0.003		
14	P1 x P5	75.17	-6.28	4.732*	3.67	2.15	0.001		
15	P1 x P6	68.50	-6.54	86.392**	3.70	-0.18	0.003		
16	P1 x P7	62.67	0.93	-0.230	4.03	-4.22	0.079**		
17	P1 x P8	67.17	17.14*+	0.375	4.27	1.27*	-0.004		
18	P1 x P9	67.83	10.77	38.279**	4.35	-0.99	0.005		
19	P1 x P10	75.17	-1.80	15.982**	4.18	6.13	0.063**		
20	P2 x P3	75.83	-3.42	3.244	3.82	2.89	0.005		
21	P2 x P4	75.83	-0.35	5.390*	3.95	-3.58	0.048**		
22	P2 x P5	71.58	2.95	3.819*	4.22	0.30	-0.003		
23	P2 x P6	75.92	-1.09	24.601**	4.15	2.89	0.005		
24	P2 x P7	72.17	-10.10	8.120**	3.75	6.78	0.081**		
25	P2 x P8	68.67	-11.26	58.776**	3.85	-6.82	0.150**		
26	P2 x P9	71.08	-3.45	39.609**	4.28	0.30	-0.003		
27	P2 x P10	72.92	9.42	3.294	3.90	6.88	0.303**		
28	P3 x P4	70.75	-4.27	4.189*	3.69	1.11**	-0.004		
29	P3 x P5	75.08	4.97	8.865**	3.82	-1.64	0.013*		
30	P3 x P6	75.25	7.48	18.813**	3.82	3.54	0.012*		
31	P3 x P7	71.17	4.93	29.326**	3.60	2.57	0.002		
32	P3 x P8	71.00	12.84	25.488**	3.51	2.28	0.006		
33	P3 x P9	71.17	9.73	17.455**	3.84	-7.06	0.112**		
34	P3 x P10	71.00	0.70	6.997**	4.18	1.60	-0.003		
35	P4 x P5	71.75	0.04	36.636**	4.00	3.86	0.017**		
36	P4 x P6	72.58	-2.78	4.570*	3.87	0.63	-0.004		
37	P4 x P7	75.42	-3.53	6.324*	4.15	-4.23	0.064**		
38	P4 x P8	76.25	-10.38*+	0.211	4.33	2.57	0.002		
39	P4 x P9	75.42	5.06	23.809**	4.10	3.86	0.017**		

^{*, **} Significantly deviating from zero at 5% and 1% respectively, +, ++ Significantly deviating from unity at 5% and 1% respectively.

40	P4 x P10	74.83	5.40	36.055**	3.94	1.11**	-0.004		
41	P5 x P6	71.25	3.54	1.748	3.98	0.14	-0.003		
42	P5 x P7	68.25	12.10	11.154**	3.78	5.48	0.047**		
43	P5 x P8	67.58	3.24	29.273**	3.65	-0.99	0.005		
44	P5 x P9	69.92	-7.41	4.599*	3.67	2.57	0.002		
45	P5 x P10	73.42	2.74	60.867**	3.52	2.25	-0.000		
46	P6 x P7	75.25	1.51	17.930**	3.82	-5.45	0.067**		
47	P6 x P8	74.50	-2.14	1.231	4.10	1.27*	-0.004		
48	P6 x P9	73.17	5.08	1.300	4.05	1.60	-0.003		
49	P6 x P10	75.75	1.36	2.620	4.03	0.63	-0.004		
50	P7 x P8	77.50	2.01	-0.265	4.17	-1.32	0.009*		
51	P7 x P9	75.83	-8.84*+	-1.070	4.37	-0.67	0.003		
52	P7 x P10	73.17	0.17	9.308**	4.40	1.92	-0.002		
53	P8 x P9	71.50	-2.64	0.490	4.37	0.63	-0.004		
54	P8 x P10	73.00	0.42	7.096**	4.23	3.86	0.017**		
55	P9 x P10	71.75	-9.79	15.214**	4.07	1.27*	-0.004		
56	Check 1	72.92	2.36	5.236*	4.08	0.30	-0.003		
57	Check 2	68.00	4.22	4.723*	4.03	2.57	0.002		
58	Check 3	65.42	2.31	0.307	4.02	-0.34	0.000		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								

Table 11: Stability parameters for ascorbic acid (mg/100g) [Eberhart and Russel (1966)]

SN	Genotype	Ascorbic acid (mg/100g)					
		μ_{i}	bi	S^2d_i			
1	P1	79.17	0.11	0.142			
2	P2	79.17	0.42	0.011			
3	P3	81.00	-1.31	7.492**			
4	P4	80.25	0.39	0.462			
5	P5	82.67	0.92	25.081**			
6	P6	83.08	0.50	27.937**			
7	P7	80.25	0.08	6.023**			
8	P8	82.50	-0.59	2.320**			
9	P9	83.92	-0.84	6.460**			
10	P10	85.08	0.19	1.555**			
11	P1 x P2	87.75	-0.29	10.070**			
12	P1 x P3	88.33	0.27	1.262*			
13	P1 x P4	85.67	-0.30	3.247**			
14	P1 x P5	82.75	0.98	-0.078			
15	P1 x P6	82.50	1.69*	-0.148			
16	P1 x P7	84.83	3.98	8.153**			
17	P1 x P8	88.00	-1.44	9.654**			
18	P1 x P9	83.25	1.27*	-0.258			
19	P1 x P10	84.00	2.55	1.442**			
20	P2 x P3	84.92	-1.01	6.871**			
21	P2 x P4	81.50	2.27	0.709*			
22	P2 x P5	84.25	2.98	2.922**			
23	P2 x P6	87.42	1.55*	-0.236			
24	P2 x P7	87.25	0.13	1.682**			
25	P2 x P8	86.00	2.55	1.442**			
26	P2 x P9	87.67	0.27	1.262*			
27	P2 x P10	86.00	1.41*	-0.272			
28	P3 x P4	85.75	0.41	0.892*			
29	P3 x P5	84.92	2.41	1.050*			
30	P3 x P6	87.58	2.41	1.050*			
31	P3 x P7	89.33	0.84	0.089			
32	P3 x P8	88.83	1.69*	-0.148			
33	P3 x P9	89.75	1.55*	-0.236			
34	P3 x P10	89.67	0.27	1.262*			
35	P4 x P5	87.08	-0.16	2.675**			
36	P4 x P6	85.33	2.55	1.442**			
37	P4 x P7	87.92	1.84	-0.010			
38	P4 x P8	89.33	1.98	0.179			
39	P4 x P9	90.58	1.27*	-0.258			
40	P4 x P10	90.25	0.70	0.306			
41	P5 x P6	88.17	-0.59	4.544**			
42	P5 x P7	86.17	3.41	4.860**			
43	P5 x P8	89.50	0.55	0.574			

^{*, **} Significantly deviating from zero at 5% and 1% respectively, +, ++ Significantly deviating from unity at 5% and 1% respectively.

44	P5 x P9	88.67	1.98	0.179
45	P5 x P10	90.17	1.69*	-0.148
46	P6 x P7	90.83	1.12	-0.193
47	P6 x P8	90.17	0.55	0.573
48	P6 x P9	89.00	1.41*	-0.272
49	P6 x P10	89.42	1.55*	-0.236
50	P7 x P8	89.92	1.27*	-0.258
51	P7 x P9	88.50	-1.16	7.748**
52	P7 x P10	85.83	3.98	8.153**
53	P8 x P9	90.33	0.84	0.089
54	P8 x P10	89.33	0.84	0.089
55	P9 x P10	88.67	1.41*	-0.273
56	Check 1	88.50	0.55	0.574
57	Check 2	87.33	1.41*	-0.272
58	Check 3	87.25	0.70	0.306

^{*, **} Significantly deviating from zero at 5% and 1% respectively,

References

- Bhave SG, Mehta JL, Bendale VW, Mhatre PP, Pethe UB. Characterassociation and path coefficient analysis of bitter gourd (*Momordica charantia* L.). Orissa Journal of Horticulture, 2003; 31(1):44-46.
- 2. Ceccarelli S. Wide adaptation: how wide. *Euphytica*, 1989; 40(3):197-205.
- 3. Das S, Choudhary DN, Maurya KR. Genotype x environment interaction in cucumber (*Cucumis sativus* L.). Vegetable Science. 2005; 32(2):182-183.
- 4. Dia M. Genotype x environment interaction and stability analysis of performance and mega-environment identification of fruit yield and yield components in watermelon [Citrullus lanatus (Thumb.) Matsum & Nakai] tested in multiple US location. Ph.D. dissertation of North Carolina State University, Raleigh, North Carolina, 2012.
- 5. Dijkhuizen A, Staub JE. QTL conditioning yield and fruit quality traits in cucumber (*Cucumis sativus* L.). Journal of New Seeds. 2002; 4(4):1-30.
- 6. Eberhart SA, Russell WL. Stability parameters for comparing varieties. Crop Science. 1966; 6:36-40.
- 7. Fisher RA. Statistical Methods for Research Workers. 2nd Ed. Oliver and Boyd, Edinburgh, 1954.
- 8. Krishna Prasad VSR, Singh DP. Phenotypic stability in bitter gourd. Indian J Horti. 1992; 49(2):179-182.
- 9. Narayan R, Ahmed N, Mufti S. Evaluation of some bitter gourd genotypes for yield traits and genetic parameters under Kashmir conditions. Ecol. Environ. 2006; 24(3A):750-752.
- 10. Narayanankutty C, Jaikumaran U, Karuppaiyan R. Genotype x environmental interaction and stability analysis in snake gourd (*Trichosanthes anguina*). Indian Journal of Agricultural Sciences. 2005; 75(11):763-765.
- 11. Parmar AR. Heterosis, combining ability and stability parameters in bottle gourd [*Lagenaria siceraria* (Mol.) Standl.]. Ph. D. (Agri.) Thesis. S.D. Agricultural University, Sardarkrushinagar, 2000.
- 12. Prasad ID, Singh RK. Evaluation of bottle gourd [*Lagenaria siceraria* (Mol.) Standl.] in Diara area of Bihar. Progressive Horticulture. 1987; 19(1, 2):27-30.
- 13. Rajput JC, Patil SL, Jamadagni BM, Patil VH. Stability of yield and its components in bitter gourd (*Momordica charantia* L.). Vegetable Science. 1994; 21(2):137-139.
- 14. Sharma M, Singh Y, Singh SK, Dhangrah VK. Exploitation of gynoecious lines in cucumber (*Cucumis sativus* L.) for heterosis breeding. International Journal of

- Bio-resource and Stress Management. 2016; 7(2):184-190.
- 15. Singh A, Ram HH. Estimates of stability parameters for yield and its components in cucumber (*Cucumis sativus* L.). Vegetable Science. 2012; 39(1):31-34.
- 16. Varalakshmi B, Subba Reddy BV. Stability analysis for some quantitative characters in ridge gourd (*Luffa acutangula*). Indian Journal of Horticulture. 1998; 55(3):248-256.
- 17. Vasanthkumar, Shirol AM, Mulge R, Thammaih N, Prasadkumar. Genotype x environmental interaction in watermelon (*Citrullus lanatus* Thunb.) genotypes for yield and quality traits. Karnataka Journal of Agricultural Sciences. 2012; 25(2):248-252.

^{+, ++} Significantly deviating from unity at 5% and 1% respectively