International Journal of Chemical Studies

P-ISSN: 2349–8528 E-ISSN: 2321–4902 IJCS 2019; 7(4): 1371-1374 © 2019 IJCS Received: 21-05-2019 Accepted: 25-06-2019

RK Kaleeswari

Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

C Bharathi

Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

R Rajeswari

Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

MR Latha

Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

Correspondence RK Kaleeswari

Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

Optimization of elevated CO₂ levels and nutrient management for lowland rice ecosystem

RK Kaleeswari, C Bharathi, R Rajeswari and MR Latha

Abstract

Experiments were conducted to assess the optimum CO₂ levels and nutrient management strategy for enhancing the rice yield and soil fertility status with rice (var.CO. 50) as test crop in open top chambers (OTC). The treatments comprised of three levels of CO₂ enrichment viz., Atmospheric CO₂ (C₀): 370 ppm (Control); OTC I (C1): 550 ppm and OTC II (C2): 750 ppm. Both the OTC chambers were connected to a control monitoring system and the each chamber has a regulator to adjust CO₂ flow. Rice crop was fertilized with four varying nutrient management techniques viz., inorganic (150:50:50 kg N, P, K ha⁻¹ +25 kg ZnSO₄ ha⁻¹), organic (1/3rd FYM+ 1/3rd Vermicompost + 1/3rd Neem cake on N equivalent basis), IPNS (Integrated Plant Nutrient System) (150:50:50 kg N, P, K ha⁻¹ +25 kg ZnSO₄ ha⁻¹ +FYM @ 12.5 t ha⁻¹ + Azospirillum @ 2 kg ha⁻¹) and untreated control. Maximum grain and straw yields were recorded due to the application of Integrated Plant Nutrient System (150:50:50 kg N, P, K ha⁻¹ +25 kg ZnSO₄ ha⁻¹ +FYM @ 12.5 t ha⁻¹ + Azospirillum @ 2 kg ha⁻¹) in the CO₂ concentration of 750 ppm. Highest acid phosphatase activity was registered at the CO₂ concentration of 750 ppm followed by 550 ppm and 370 ppm. Acid phosphatase activity was the highest due to the application of organics (1/3rd FYM+ 1/3rd Vermicompost + 1/3rd Neem cake on N equivalent basis) followed by the application of 150:50:50 kg N, P, K ha-1 +25 kg ZnSO4 ha-1 +FYM @ 12.5 t ha-1 + Azospirillum @ 2 kg ha-1. With increase in CO2 concentration an increase in CO2 emission and microbial biomass were observed.

Keywords: Elevated CO₂ level, nutrient management, soil enzyme, microbial biomass, CO₂ emission

Introduction

Rice (*Oryza sativa* L.) is one of the most important crops in the world and the primary staple food in Asia. Cultivation practices such as crop rotations, soil tillage, fallow periods, and water management have been known to affect crop yields and soil carbon sequestration. Among the GHG s CO₂ is the main one, the effect of which should be related to the crop production. Carbon serves as the primary substrate for photosynthesis and is the one to contribute to the yield formation in plants. Rice responses to climate change vary with region and rice cultivars. There is a need for more experiments on various cultivars of rice under global warming situation in many areas. Hence this study was conducted with the objectives to determine the effect of elevated CO₂ levels on growth, yield and soil fertility status under lowland rice ecosystem. Depending on population growth and energy use scenarios, atmospheric CO₂ concentration is expected to rise from about 370 μ mol ⁻¹ currently to about 485 to 1000 μ mol ⁻¹ by 2100 (Prentice *et al.*, 2001)^[9]. Elevated CO2 typically increases plant photosynthesis and biomass production, whereas increasing temperatures might either decrease or increase photosynthesis and production (Baker *et al.*, 1993)^[2].

Materials and Methods

Pot experiments were conducted with rice (var.CO. 50) as test crop in open top chambers (OTC). The treatments comprised of three levels of CO₂ enrichment viz., Atmospheric CO₂ (C₀): 370 ppm (Control); OTC I (C₁): 550 ppm and OTC II (C₂): 750 ppm. Both the OTC chambers were connected to a control monitoring system and the each chamber has a regulator to adjust CO₂ flow. Rice crop was fertilized with four varying nutrient management techniques viz., inorganic (150:50:50 kg N, P, K ha⁻¹ +25 kg ZnSO₄ ha⁻¹), organic (1/3rd FYM+ 1/3rd Vermicompost + 1/3rd Neem cake on N equivalent basis), IPNS (Integrated Plant Nutrient System) (150:50:50 kg N, P, K ha⁻¹ +25 kg ZnSO₄ ha⁻¹ +FYM @ 12.5 t ha⁻¹ + Azospirillum @2 kg ha⁻¹) and untreated control.

Mean monthly climatic variables at different stages of crop growth viz., active tillering, panicle initiation, flowering and harvest stages were meseaured. Grain and straw yields were recorded. Field moist soil samples were analyzed for acid and alkaline phosphomonoesterase activity with a buffered disodium p-nitrophenyl phosphate tetrahydrate solution (Tabatabai, 1982) ^[12]. Soil dehydrogenase and urease activities were measured (Von Mersi and Schinner, 1991 ^[14]; Tabatabai and Bremner, 1972) ^[13]. Soil CO₂ emissions (Carter and Gregorich, 2008) ^[5] by alkali trap method, soil organic carbon (Walkely and Black, 1934) ^[15], microbial biomass C in soil by chloroform fumigation method (Beck *et al.* 1997) ^[3] and water soluble carbon were analysed.

Results and Discussion

The mean monthly climatic variables recorded at different stages of crop growth indicated that air temperature was the highest at harvest stage and humidity per cent was the highest at active tillering stage (Table 1).

Maximum grain and straw yields were recorded due to the application of Integrated Plant Nutrient System (150:50:50 kg N, P, K ha⁻¹ +25 kg ZnSO₄ ha⁻¹ +FYM @ 12.5 t ha⁻¹ + Azospirillum @ 2 kg ha⁻¹) in the CO₂ concentration of 750 ppm. Application of inorganics alone recorded higher yield than the application of organics ($1/3^{rd}$ FYM+ $1/3^{rd}$ Vermicompost + $1/3^{rd}$ Neem cake on N equivalent basis). The untreated control recorded the lowest yield of 33.6 g pot⁻¹ (Table 2). Baker *et al.* (1992) ^[1] showed that shoot and root biomass increased under increasing CO₂ concentration. According to Yang *et al.* (2006) ^[16], the final total biomass of rice was increased by 16% under elevated CO₂.

Highest acid phosphatase activity was registered at the CO₂ concentration of 750 ppm followed by 550 ppm and 370 ppm. Acid phosphatase activity was the highest due to the application of organics ($1/3^{rd}$ FYM+ $1/3^{rd}$ Vermicompost + $1/3^{rd}$ Neem cake on N equivalent basis) followed by the application of 150:50:50 kg N, P, K ha⁻¹ +25 kg ZnSO₄ ha⁻¹ +FYM @ 12.5 t ha⁻¹ + Azospirillum @ 2 kg ha⁻¹. Application of inorganics alone recorded higher acid phosphatase activity than the untreated control. A similar pattern of results was obtained with alkaline phosphatase, dehydrogenase and urease activity also (Table 3). Larson *et al.* (2002) ^[7] and Lipson *et al.* (2005) ^[8] found a significant stimulation of soil extracellular enzyme activities under elevated CO₂.

With increase in CO_2 concentration an increase in CO_2 emission was observed. At flowering stage the emission was more followed by tillering and harvest stages. Application of organics (1/3rd FYM+ 1/3rd Vermicompost + 1/3rd Neem cake on N equivalent basis) recorded higher CO₂ emission followed by the application of 150:50:50 kg N, P, K ha⁻¹ +25 kg ZnSO₄ ha⁻¹+FYM @ 12.5 t ha⁻¹ + Azospirillum @ 2 kg ha⁻¹ ¹. The application of organic substances or manure at high rates in the fields caused the deposition of soil and organic substances. The organic substances reacted with soil particles to form complex compounds that were hardly decomposed into carbon dioxide (Suwannarit, 2008) [11]. The optimum application rates of manure are between 3.13-6.25 t ha⁻¹ because those application rates have the least effect on quantities of greenhouse gas emissions (Sampanpanish, 2012) ^[10]. Application of inorganics alone and untreated control recorded lowest CO₂ emission (Table 4).

With increase in CO₂ concentration, an increase in organic C content was observed. The labile soil C pools, namely microbial biomass C, readily mineralizable C, and potassium permanganate oxidizable C were increased by 27, 38 and 37% respectively under elevated CO₂ concentration of 550 µmol mol⁻¹ than ambient CO₂, 394 µmol mol⁻¹. Application of organics ($1/3^{rd}$ FYM+ $1/3^{rd}$ Vermicompost + $1/3^{rd}$ Neem cake on N equivalent basis) recorded higher organic carbon content followed by the application of 150:50:50 kg N, P, K ha⁻¹ +25 kg ZnSO₄ ha⁻¹ +FYM @ 12.5 t ha⁻¹ + Azospirillum @ 2 kg ha⁻¹. Application of inorganics alone and untreated control recorded lowest organic carbon content. Water soluble carbon content was not remarkably changed due to the treat mental effects (Table 5).

With increase in CO₂ concentration, an increase in microbial biomass C was observed. Soil microbial biomass C under elevated CO₂ was significantly larger (by 18.9–25.2%) than that under ambient CO₂ (Inubushi *et al.* 2010) ^[6]. Application of organics ($1/3^{rd}$ FYM+ $1/3^{rd}$ Vermicompost + $1/3^{rd}$ Neem cake on N equivalent basis) recorded higher microbial biomass C content followed by the application of 150:50:50 kg N, P, K ha⁻¹ +25 kg ZnSO₄ ha⁻¹ +FYM @ 12.5 t ha⁻¹ + Azospirillum @ 2 kg ha⁻¹. Application of inorganics alone and untreated control recorded lowest microbial biomass C content (Table 5).

With CO₂ enrichment of 750 ppm and application of 150:50:50 kg N, P, K ha⁻¹ +25 kg ZnSO₄ ha⁻¹ +FYM @ 12.5 t ha⁻¹ + Azospirillum @ 2 kg ha⁻¹ enhanced the growth, yield and soil fertility status under lowland rice ecosystem.

Table 1: Mean monthly climatic variable during crop growing stages

	Stage of the crop							
Variables	Active tillering	Panicle Initiation	Flowering	Harvest				
Air temperature ° C	35.1	33.0	35.5	40.2				
Humidity %	49.9	48.6	35.3	34.2				
Soil temperature ° C	36.8	33.8	28.8	35.7				
Canopy temperature ° C	32.2	29.6	28.5	32.2				

Table 2: Effect of elevated CO_2 and nutrient management on grainand straw yield of rice (g pot⁻¹)

Treatments		Grain		Straw						
C ₀ : 370 ppm S ₁		33.6		48.6						
S_2		54.3			68.6					
S_3										
S_4		81.0 98.6								
Mean		52.7			69.9					
C1: 550 ppm S1		46.6			65.3					
S_2		73.3		110.6						
S ₃		67.0		71.6						
S_4		96.6		128.0						
Mean		70.9 93.9								
C ₂ : 750 ppm S ₁		54.0			79.3					
S_2		98.3			144.3					
S_3	69.0 98.6									
S_4		142.6		167.6						
Mean		91.0		122.5						
CD(D,0.05)	С	Ν	CXN	С	Ν	CXN				
CD(P:0.05)	23.4**	27.0**	NS	17.5**	20.2**	NS				

Table 3: Effect of elevated CO2 and nutrient management on Soil enzyme activity: Acid and alkaline phosphatase activity (µg PNP g ¹);
dehydrogenase activity (DHA) (μ g TPF g ⁻¹ day ⁻¹ and urease activity (μ g NH ₃ g ⁻¹) (Harvest stage)

Treatments	Ac	id phos	phatase	Alkaline phosphatase DHA				Urease				
C ₀ : 370 ppm S ₁		60.7	'5		132.4	45		27.2	20	10.25		
S_2		60.6	66	142.13			30.75			12.12		
S ₃		74.5	50	154.50			36.83			13.85		
S 4		63.1	7	162.29			37.51			14.03		
Mean		64.6	52		147.8	34		33.0)7	12.56		
C1: 550 ppm S1		67.1	6		151.2	27	25.09			11.57		
S_2		75.3	32	158.61			28.66			12.78		
S ₃	86.62			161.29			28.81			17.03		
S_4	76.13			162.76			30.11			21.85		
Mean	76.31		158.48				28.0	00		15.8	31	
C ₂ : 750 ppm S ₁		72.15		157.97			28.76			12.59		
S_2		77.8	30		162.10		35.53		14.29			
S ₃		91.66		91.66 166.25		166.25			36.9	92	22.54	
S 4		80.2	20	175.00			39.13			27.10		
Mean	80.45		165.33			35.09		19.13				
CD(D,0.05)	С	Ν	CXN	С	Ν	CXN	С	Ν	CXN	С	Ν	CXN
CD(P:0.05)	4.0	4.7	NS	8.1	9.3	NS	2.9	3.5	NS	3.0	3.5	6.0

Table 4: Effect of elevated CO2 and nutrient management on CO2 emission (mg CO2 m⁻² day ⁻¹)

Treatments		Tillering		J	Flowering	ŗ				
C ₀ : 370 ppm S ₁		16.0		39.0 11.0						
S_2		14.8			33.2			8.7		
S_3		17.6			41.5			15.6		
S_4		14.8			35.0					
Mean		15.8			37.2					
C1: 550 ppm S1		31.2			55.4			26.5		
S_2		19.2			36.2		12.1			
S ₃		53.2		76.1			44.3			
S_4		26.4			48.5		20.2			
Mean		32.5			54.0			25.8		
C ₂ : 750 ppm S ₁		58.2			78.7			50.7		
S_2		29.2			49.2			23.2		
S ₃		87.0 98.0					66.7			
S_4	36.8			53.4			27.6			
Mean		52.8		69.8			42.0			
CD(D,0.05)	С	N	CXN	С	N	CXN	С	Ν	CXN	
CD(P:0.05)	1.5**	1.7**	3.0	2.1**	2.4**	4.2	1.4**	1.7**	2.9	

Table 5: Effect of elevated CO2 and nutrient management on organic C, water soluble C (g kg⁻¹) and microbial biomass C (µg kg⁻¹)

Treatments	0	rganic C		Microbial biomass C				Water soluble C			
C ₀ : 370 ppm S ₁	5.1				275	12.3					
S_2	5.5				437	12.4					
S ₃	6.5				520	12.6					
S 4	6.2				12.5						
Mean		5.8			12.4						
C1: 550 ppm S1		6.2			390		12.3				
S_2		6.6			545	12.4					
S ₃	7.3				12.5						
S 4	6.8				12.5						
Mean		6.7		562				12.4	4		
C ₂ : 750 ppm S ₁		6.6		437			12.3				
S_2		7.2		680			12.3				
S ₃		7.5		931			12.5				
S4	7.4			807			12.4				
Mean	7.2			714			12.4				
CD(D;0.05)	С	N	CXN	C	N	CXN	С	N	CXN		
CD (P:0.03)	0.16**	0.18**	0.31	11.61**	13.40**	23.22	NS	NS	NS		

References

- 1. Baker JT, Allen LH Jr., Boote KJ, Jones P, Jones JW. Rice photosynthesis and evapotranspiration in subambient, ambient, and superambient carbon dioxide concentration. Agron. J. 1992; 82:834-840.
- Baker JT, Allen LH, Boote KJ. Temperature effects on rice at elevated CO2 concentration. J. Exp. Bot. 1993; 43(7):959-964.
- 3. Beck T, Joergensen RG, Kandeler E, Makeschin F, Nuss E, Oberholzer HR, Scheu S. An inter-laboratory comparison of ten different ways of measuring soil

microbial biomass C. Soil Biol. Biochem. 1997; 29(7):1023-1032.

- 4. Bhattacharyya P, Roy KS, Neogi S, Dash PK, Nayak AK, Mohanty S, Baig MJ, Sarkar RK, Rao KS. Impact of elevated CO2 and temperature on soil C and N dynamics in relation to CH4 and N2O emissions from tropical flooded rice (*Oryza sativa* L.). Sci.total environ. 2013; (1):461-462, 601-611.
- 5. Carter MR, Gregorich EG. Soil Sampling and Methods of Analysis. 2nd Edition, Canadian Society of Soil Science, Taylor & Francis Group, LLC, Boca Raton, 2008.
- Inubushi K, Cheng W, Mizuno T, Lou Y, Hasegawa T, Sakai H, *et al.* Microbial biomass carbon and methane oxidation influenced by rice cultivars and elevated CO₂ in a Japanese paddy soil. European Journal of Soil Science. 2010; 62(1):69-73.
- Larson JL, Zak DR, Sinsabaughb RL. Extracellular enzyme activity beneath temperate trees growing under elevated carbon dioxide and ozone. Soil Sci Soc Am J. 2002; 66:1848-1856.
- Lipson DA, Wilson RA, Oechel WC. Effects of elevated atmospheric CO2 on soil microbial biomass, activity and diversity in a chaparral ecosystem. Appl Environ Microbiol. 2005; 71:8573-8580.
- Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, *et al.* The carbon cycle and atmospheric carbon dioxide, 2001, pp. 183-237. In. Houghton JTY, Ding DJ, Griggs M, Noguer PJ. Van der Linden X, Dai Maskell K, Johnson CA (ed.) Climate Change: The scientific basis. Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge Univ. Press, Cambridge, 2001.
- 10. Sampanpanish P. Effect of organic fertilizer on CO₂, CH₄ and N₂O emissions in a paddy field. Modern Applied Science. 2012; 6(12):13-21.
- 11. Suwannarit A. Fertilizer for agriculture and the environment (2nd ed.). Kasetsart University, Bangkok, 2008.
- 12. Tabatabai MA. Soil enzymes. In: Page AL, Miller RH, Keeney DR. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy; Soil Science Society of America. Madison, WI, 1982.
- 13. Tabatabai MA, Bremner JM. Assay of Urease activity in soils. Soil Biol. Biochem. 1972; 4:479-487.
- 14. Von Mersi W, Schinner F. An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biol. Fertil. Soils. 1991; 11:216-220.
- 15. Walkley A, Black IA. An Examination of Degtjareff Method for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934; 37:29-37.
- 16. Yang L, Huang J, Yang H, Dong G, Liu G, Zhu J *et al.* Seasonal changes in the effects of free-air CO₂ enrichment (FACE) on dry matter production and distribution of rice. Field Crops Research. 2006; 98:12-19.