International Journal of Chemical Studies

P-ISSN: 2349-8528 E-ISSN: 2321-4902 IJCS 2019; 7(5): 1654-1657 © 2019 IJCS Received: 22-07-2019 Accepted: 24-08-2019

HN Joshi

Ph. D. Scholar, College of Horticulture, S.D. Agricultural University, Jagudan, Gujarat, India

LR Varma

Ph. D. Scholar, College of Horticulture, S.D. Agricultural University, Jagudan, Gujarat, India

SG More

Principal & Dean, College of Horticulture, S. D. Agricultural University, Jagudan, Gujarat, India

HS Bhaduria

Ph. D. Scholar, College of Horticulture, S.D. Agricultural University, Jagudan, Gujarat, India

BH Prajapati

Principal & Dean, College of Horticulture, S. D. Agricultural University, Jagudan, Gujarat, India

Correspondence HN Joshi Ph. D. Scholar, College of Horticulture, S.D. Agricultural University, Jagudan, Gujarat, India

Effects of organic nutrients in combination with bio-fertilizers on growth and physico-chemical parameters of garden pea (*Pisum sativum* L.) CV. bonneville

HN Joshi, LR Varma, SG More, HS Bhaduria and BH Prajapati

Abstract

The experiment was conducted to examine the thirty treatments with five levels of organic nutrients *viz.*, control (Recommended dose of N as urea), farmyard manure, vermicompost, poultry manure and neem cake along with six levels of bio-fertilizers *viz.*, seed treatment with PSB (200 ml/ha), seed treatment with *Azospirillum* (200 ml/ha), soil treatment with PSB (500 ml/acre), soil treatment with KMB (500 ml/acre) and soil treatment with *Azospirillum* (500 ml/acre) were tested in a Randomized Block Design (with factorial concept) with three replications during the *rabi* season of the year 2013 and 2014. The results revealed that, the significantly maximum nitrogen content (4.20% and 4.15%) and protein content (26.28% and 25.96%) was recorded with treatment F5 (Recommended dose of N as neem cake) and treatment T1 [Seed treatment with PSB (200ml/ha)] was found significantly maximum nitrogen content (4.29% and 4.13%) and protein content (26.86% and 25.88%) during the year 2013 and 2014. The days taken for germination, germination (%), vine length of 45 & 90 DAS (cm), days taken for initiation of Ist flower, length of pod (cm), thickness of pod (mm) and sugar (%) found non-significant in all treatments.

Keywords: Bonneville, garden pea, growth, physico-chemical, quality

Introduction

The growing of vegetable is the most intensive and remunerative business. Garden pea (*Pisum sativum* L. var. hortense) is a second important food legume of the world. The green and dry foliage are used as cattle fodder and green pods of vegetable pea are highly nutritive so, preferred for culinary purpose. The high percentage of digestible protein (7.2 g), carbohydrates (15.8 g), vitamin A (139 I.U.), vitamin C (9 mg), magnesium (34 mg) and phosphorus (139 mg) per 100 g of edible portion (Gopalkrishnan, 2007) ^[6]. The food legumes restorer of soil fertility has long been recognized due to their unique ability of symbiotic nitrogen fixation. This also makes them the most important and useful component of a cropping system in the present context of energy crisis (Rana *et al.* 1998) ^[12]. To eradicate the low yield of pea, success of Indian agriculture depends heavily on use of fertilizers. To sustain soil health and benign environment there is a need for standardization the conjunctive use of organic sources and bio-fertilizers in order to increase the productivity and alternately improving the soil health (Sharma and Chauhan, 2011; Bahadur *et al.* 2006; Rajput and Kushwah, 2005) ^[13, 1, 11]. The concept of organic nutrients with bio-fertilizers are gaining considerable momentum today but negligible study has been conducted so, the present investigation was planned on garden pea.

Materials and Methods

The investigation was conducted at Department of Vegetable Science, College of Horticulture, S. D. Agricultural University, Sardarkrushinagar. Five levels of organic nutrients including recommended dose of N as chemical fertilizer and six levels of bio-fertilizers were applied individually and with in combination. So, the total numbers of treatment combinations were thirty were tested during the *rabi* season of the year 2013 and 2014. The experiment was laid out in a Randomized Block Design (with factorial concept) with thirty treatments were employed and replicated thrice.

The details of treatments, their combinations and notations are furnished here in order to have their clear understanding.

✓ Factors:	Notation
A) Organic Fertilizers (Five levels):	
- Control (Recommended dose of N as Urea)	\mathbf{F}_1
- Recommended dose of N as Farm Yard Manure	F_2
- Recommended dose of N as Vermicompost	F_3
- Recommended dose of N as Poultry Manure	\mathbf{F}_4
- Recommended dose of N as Neem cake	F_5
B) Bio-fertilizers (Six levels):	
- Seed treatment with PSB (200 ml/ha)	T_1
- Seed treatment with KMB (200 ml/ha)	T_2
- Seed treatment with Azospirillum (200 ml/ha)	T_3
- Soil treatment with PSB (500 ml/acre)	T_4
- Soil treatment with KMB (500 ml/acre)	T_5
- Soil treatment with Azospirillum (500 ml/acre)	T_6

To raise the crop recommended package of practices were followed. The treatments were evaluated on the basis of growth, flowering and yield performance from ten randomly selected tagged plants at different stages. The mean data were subjected to statistical analysis following analysis of variance technique (Gomez and Gomez, 1984)^[5].

Results and Discussion Growth Parameters

Organic manures: A perusal of data from Table 1 revealed that minimum days taken for germination were observed with treatment F_5 (7.47) during the year 2013, treatment F_1 (6.72) during the year 2014 and treatment F_1 (7.12) in pooled data. The maximum germination percent was observed with treatment F₄ (94.81% and 94.10%) during the year 2013 and pooled analysis; treatment F_3 (93.59%) during the year 2014. Numerically maximum vine length at 45 days after sowing was recorded with treatment F_5 (48.57 cm and 46.85 cm) during the both years (2013 and 2014) and treatment F_5 (47.71 cm) in pooled. The highest vine length at 90 days after sowing was observed with treatment F₅ (117.60 cm, 117.73 cm and 117.67 cm) during the both year (2013 and 2014) and in pooled. Minimum days taken for flowering were observed with treatment F_4 (51.47 days) during the year of 2013, treatment F₄ (51.08 days) in pooled and treatment F₁ (50.63 days) during the year 2014.

Bio-fertilizers: A perusal of data from Table 1 revealed that the numerically minimum days for germination was observed under treatment T_1 (7.37) and treatment T_2 (7.37) during the year 2013, treatment T_3 (6.69) during the year 2014 and treatment T_1 (7.12) in pooled. Maximum germination percent was obtained with treatment T_1 (95.48%, 93.75% and 94.62%) during the year 2013, 2014 and in pooled. The maximum vine length (cm) at 45 days after sowing recorded with treatment T_1 (49.59 cm) during the year 2013, treatment T_1 (48.20 cm) in pooled and treatment T_2 (47.21 cm) during the year 2014. Maximum vine length at 90 days after sowing was obtained with treatment T_2 (119.11 cm, 117.91 cm and 118.51 cm) during the year 2013, 2014 and in pooled. Initiation of flower in minimum days was observed with treatment T_1 (51.46 days, 50.26 days and 50.86 days) during the year 2013, 2014 and in pooled.

These results might be due to the slow release of nutrients from organic manures and when supplemented with bio-fertilizers it helped to microorganisms in the faster decomposition of organic manures, thereby increasing the availability of nutrients and ultimately resulting in higher plant growth rate. These findings are agreement with the findings of El-Beheidi *et al.* (1985) ^[3], Zaghloul *et al.* (1988) ^[16], Bahadur *et al.* (2006) ^[11], Negi *et al.* (2006) ^[8], Taura and Fatima (2008) ^[14] in cowpea, El-Desuki *et al.* (2010) ^[4], Mishra *et al.* (2010) ^[7], Chattoo *et al.* (2010) ^[2], Pan and Das (2011) ^[9] in cowpea, Patra and Sinha (2012) ^[10] in green gram, Sharma *et al.* (2011) ^[13] in garden pea and Tetali *et al.* (2016) ^[15] in blackgram.

Physico-Chemical Parameters

Organic manures: A perusal of data from Table 2 revealed that the maximum length of pod was found in treatment F_4 (8.44 cm) during the year 2013; F_5 (8.44 cm and 8.42 cm) during the year of 2014 and in pooled.

Numerically maximum thickness of pod (10.34 mm) was observed in treatment F_4 and F_5 during the year 2013; 10.15 mm in treatment F_2 and F_5 during the year 2014 and treatment F_4 (10.25 mm) in pooled. The highest total sugar content of pod was found with treatment F_5 (4.22%) during the year 2013; treatment F_1 (4.38%) during the year 2014 and treatment F_5 (4.29%) in pooled. Significantly maximum nitrogen content in seed was noted with treatment F_5 (4.20%, and 4.15%) during the year (2013 and 2014) of experimentation. Significantly maximum protein content in seed was noted with treatment F_5 (26.28%, and 25.96%) during the year (2013 and 2014) of experimentation.

Bio-fertilizers: A perusal of data from Table 2 revealed that the maximum length of pod was recorded with treatment T_1 (8.56 cm, 8.46 cm and 8.51 cm) during the year 2013, 2014 and in pooled. The numerically maximum thickness of pod (10.36 mm) was observed in treatment T_2 and T_5 during the year 2013; treatment T_1 (10.20 mm) during the year 2014 and treatment T₂ (10.26 mm) in pooled. The highest total sugar content of pod was found with treatment T_1 (4.20%) during the year 2013; treatment T_5 (4.38%) during the year 2014 and 4.27% with treatment T_4 & T_5 in pooled. Significantly maximum nitrogen content in seed was noted with treatment $T_1(4.29\%, \text{ and } 4.13\%)$ during the both years (2013 and 2014) of experimentation. Significantly maximum protein content in seed was noted with treatment T_1 (26.86% and 25.88%) during the both years (2013 and 2014) of experimentation. The effect of organics and bio-fertilizer doses on protein content in seed. They attributed this firstly to the increase in the N content of beans and N being an integral part of enzymes and amino acids, plays a major role in synthesis of proteins and secondly due to the increase in the availability of P with the application of bio-fertilizer, which help in energy storage and transfer in form of ADP and ATP, which are essential for protein biosynthesis. These results are in conformity with El-Desuki et al. (2010)^[4].

Table 1	: Influences	of organic	nutrients ar	nd bio-fertilizers o	n growth	parameters of	garden pea
I unic 1	· minucinees	or organic	nutrentis ui	ia bio fertilizers o	in growth	purumeters or	Surgen peu

Treatments	Days taken for germination			Germination (%)		Vine length at 45 DAS (cm)			Vine length at 90 DAS (cm)			Days taken for initiation of 1 st flower			
	Year 2013	Year 2014	Pooled	Year 2013	Year 2014	Pooled	Year 2013	Year 2014	Pooled	Year 2013	Year 2014	Pooled	Year 2013	Year 2014	Pooled
Organic manures															
F_1	7.52	6.72	7.12	94.129	90.45	92.29	46.58	46.12	46.35	116.99	114.27	115.63	51.57	50.63	51.10
F ₂	7.52	6.74	7.13	94.399	92.62	93.50	47.92	46.33	47.12	115.97	116.33	116.15	51.49	51.11	51.30
F3	7.59	6.74	7.17	93.769	93.59	93.67	47.66	46.48	47.07	116.59	115.84	116.21	51.56	51.04	51.30
F_4	7.52	7.32	7.42	94.819	93.39	94.10	47.37	46.23	46.80	115.84	116.55	116.20	51.47	50.69	51.08
F5	7.47	7.26	7.36	94.609	93.12	93.86	48.57	46.85	47.71	117.60	117.73	117.67	51.68	51.26	51.47
S. Em.±	0.11	0.21	0.12	0.65	1.14	0.66	0.88	0.36	0.47	1.20	1.84	1.10	0.47	0.24	0.26
C.D. at 5%	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
]	Bio-ferti	lizers						
T ₁	7.37	6.87	7.12	95.489	93.75	94.62	49.59	46.82	48.20	115.58	115.56	115.57	51.46	50.26	50.86
T ₂	7.37	7.20	7.28	94.399	92.07	93.23	48.47	47.21	47.84	119.11	117.91	118.51	51.68	51.42	51.55
T ₃	7.63	6.69	7.16	94.749	91.83	93.28	45.39	46.07	45.73	116.04	115.60	115.82	51.49	51.07	51.28
T4	7.57	7.02	7.30	94.699	93.08	93.89	47.83	45.98	46.91	117.51	116.28	116.89	51.55	50.93	51.31
T ₅	7.57	6.89	7.23	93.569	92.67	93.11	47.69	46.69	47.19	116.90	117.01	116.96	51.55	51.02	51.28
T6	7.64	7.06	7.35	93.169	92.41	92.79	46.75	45.66	46.21	114.45	114.51	114.48	51.59	50.98	51.29
S. Em.±	0.13	0.23	0.13	0.72	1.25	0.72	0.96	0.39	0.72	1.32	2.02	1.20	0.52	0.26	0.29
C.D. at 5%	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
CV%	6.45	12.71	9.85	2.93	5.23	4.22	7.80	3.25	6.03	4.38	6.72	5.67	3.87	1.97	3.08

Table 2: Effects of organic manures and bio-fertilizers on physico-chemical parameters of garden pea

	Length of pod (cm)			Thickness of pod (mm)			Total sugar (%)			Nitrogen content (%) in seed			Protein content (%) in seed		
Treatments	Year 2013	Year 2014	Pooled	Year 2013	Year 2014	Pooled	Year 2013	Year 2014	Pooled	Year 2013	Year 2014	Pooled	Year 2013	Year 2014	Pooled
Organic manures															
F_1	8.31	8.39	8.35	10.23	10.00	10.12	4.16	4.38	4.27	4.07	4.07	4.07	25.45	25.46	25.46
F ₂	8.34	8.26	8.30	10.27	10.15	10.22	4.18	4.28	4.23	4.10	4.07	4.08	25.67	25.45	25.56
F ₃	8.40	8.22	8.31	10.31	10.02	10.17	4.15	4.36	4.26	4.15	3.93	4.04	25.97	24.58	25.28
F4	8.44	8.34	8.39	10.34	10.12	10.23	4.14	4.34	4.24	4.08	4.09	4.09	25.56	25.58	25.57
F5	8.40	8.44	8.42	10.34	10.15	10.25	4.22	4.36	4.29	4.20	4.15	4.18	26.28	25.96	26.12
S. Em.±	0.12	0.14	0.10	0.19	0.22	0.15	0.03	0.03	0.02	0.01	0.02	0.06	0.05	0.12	0.40
C.D. at 5%	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.02	0.05	NS	0.13	0.34	NS
							Bi	io-fer	tilizers						
T1	8.56	8.46	8.51	10.17	10.20	10.19	4.20	4.32	4.26	4.29	4.13	4.21	26.86	25.88	26.37
T ₂	8.32	8.22	8.27	10.36	10.15	10.26	4.17	4.31	4.24	4.08	4.00	4.04	25.54	25.04	25.29
T3	8.39	8.28	8.33	10.30	10.12	10.21	4.18	4.34	4.26	4.06	4.00	4.03	25.43	25.04	25.19
T 4	8.29	8.34	8.32	10.29	10.13	10.21	4.17	4.36	4.27	4.00	4.01	4.00	25.03	25.09	25.05
T5	8.36	8.36	8.36	10.36	9.96	10.16	4.16	4.38	4.27	4.07	4.08	4.07	25.47	25.52	25.49
T6	8.35	8.32	8.34	10.30	9.98	10.14	4.16	4.36	4.26	4.22	4.02	4.12	26.39	25.17	25.78
S. Em.±	0.13	0.16	0.10	0.21	0.24	0.16	0.03	0.03	0.02	0.01	0.02	0.07	0.05	0.13	0.50
C.D. at 5%	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.02	0.06	NS	0.14	0.37	NS
CV%	5.97	7.19	6.61	7.84	9.25	8.56	2.80	2.51	2.65	0.75	1.98	1.49	0.75	1.98	1.49

Summary and Conclusion

Significantly maximum nitrogen content and protein content in seed on dry matter basis were recorded with treatment F_5 (Recommended dose of N as neem cake), treatment T_1 [Seed treatment with PSB (200ml/ha)] and in treatment combination F_5T_1 [Recommended dose of N as neem cake + Seed treatment with PSB (200 ml/ha)] during the both years (2013 and 2014). The experimental evidences warrant the following specific conclusion which may be adopted for profitable organic production of garden pea under North Gujarat conditions. It may be concluded that the application of nitrogen through neem cake in combination with PSB achieved better growth with good quality of pods under North Gujarat condition, as this treatment combination proved to be the best among all the treatments.

References

1. Bahadur A, Singh J, Singh KP, Mathura Rai. Effect of plant growth, yield and quality attributes of garden pea as

influenced by organic amendments and biofertilizers. Indian Journal of Horticulture. 2006; 63:464-466.

- Chattoo MA, Ahmad N, Khan SH, Sidique SH, Hussan K. Residual effect of organic manures and inorganic fertilizers on succeeding crop pea (*Pisum sativum* L.) cv. Bonneville. The Asian Journal of Horticulture. 2010; 4:299-304.
- 3. El-Beheidi MA, Gad AA, El-Sawah MH, El Hady HM. Effect of inoculation with *Rhizobium* leguminosarum and nitrogen fertilization on pea plants. Zold segtermesz tesi Kutato Intezet Bulletinje. 1985; 18:17-25.
- 4. El-Desuki MH, Magda MM, Asmaa R, Abd El-Al FS. Effect of organic and bio-fertilizers on the plant growth, green pod yield and quality of pea, International Journal of Academic Research. 2010; 2(1):111-113.
- 5. Gomez KA, Gomez AA. Statistical procedures for agricultural research, 2nd edition. John Wiley and Sons, New York, 1984, 680.
- 6. Gopalkrishnan TR. Vegetable crops. New India publishing agency, New Delhi. 2007; 4:170.

- Mishra A, Prasad K, Rai G. Effect of bio-fertilizers on growth and yield of dwarf Field Pea (*Pisum sativum* L.) in conjuction with different doses of chemical fertilizers. Journal of Agronomy. 2010; 9(4):163-168.
- 8. Negi S, Singh RV, Dwivedi OK. Effect of bio-fertilizers, nutrient sources and lime on growth and yield of garden pea. Legume Research. 2006; 29(4):282-285.
- Pan S, Das A. Control of cowpea (Vigna sinensis) root and collar rot (*Rhizoctonia solani*) with some organic formulations of *Trichoderma harzianum* under field condition. The Journal of Plant Protection Sciences. 2011; 3(2):20-25.
- 10. Patra PS, Sinha AC. Effect of organics on yield, uptake and economics of green gram (*Vigna radiata* L.) production under TERAI region of West Bengal. *Legume Research* (Indian Journal). 2012; 35(2):169-172.
- 11. Rajput RL, Kushwah SS. Effect of integrated nutrient management on yield of pea (*Pisum sativum*). Legume Res. 2005; 28:231-232.
- 12. Rana NS, Singh GV, Ahlawat IPS. Effect of nitrogen, *Rhizobium* inoculation and phosphorus on root nodulation, dry matter yield and nutrient uptake in pigeon pea (*Cajanas cajan*). Indian J Agron. 1998; 43:102-106.
- 13. Sharma U, Chauhan JK. Influence of integrated use of inorganic and organic sources of nutrients on growth and production of pea. Journal of Farm Sciences. 2011; 1:14-18.
- Taura DW, Fatima MS. Effects of organic and inorganic fertilizers on the vegetative and reproductive parts of some selected varieties of cowpea (*Vigna unguiculata*). African Journal of General Agriculture. 2008; 4(2):79-86.
- 15. Tetali S, Lakshmanan P, Chandra PB. Efficacy of bio control agents and organic amendments against root rot disease in black gram. 2016; 9(1):279-282.
- Zaghloul MM, Darwesh MM, Abded-Naby HE. Effect of rhizobia inoculation and NPK levels on growth and yield of pea plants. J Agric. Sci. Mansoura Uni. 1988; 13(4):1951-1985.