International Journal of Chemical Studies

P-ISSN: 2349–8528 E-ISSN: 2321–4902 IJCS 2019; 7(5): 934-939 © 2019 IJCS Received: 19-07-2019 Accepted: 21-08-2019

Jayshri B Kadu

Department of Soil Science and Agril, Chemistry, College of Agriculture, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Dist. Ratnagiri, Maharashtra, India

RV Dhopavkar

Department of Soil Science and Agril, Chemistry, College of Agriculture, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Dist. Ratnagiri, Maharashtra, India

Sanjivani P Gondane

Department of Horticulture. Mahatma Phule Krishi Vidyapeet, Rahuri, Maharashtra, India

Correspondence

Jayshri B Kadu Department of Soil Science and Agril, Chemistry, College of Agriculture, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Dist. Ratnagiri, Maharashtra, India

Effect of soil application of potassium and foliar spray of zinc and boron on available nutrient content in soil at different growth stages of watermelon [*Citrullus lanatus* (Thunb.)]

Jayshri B Kadu, RV Dhopavkar and Sanjivani P Gondane

Abstract

The experiment was conducted on the lateritic soil of *Konkan* region to study the "Effect of soil application of potassium and foliar spray of zinc and boron on availability of different nutrient in soil at different growth stage of watermelon [*Citrullus lanatus* (Thunb).]. The investigation was revealed that the nutrient content in soil i.e available nitrogen, phosphorus, potassium, zinc and boron at various growth stages found influenced due to application of 75 kg K₂O ha⁻¹ along with 0.5% Zn and 0.1% B, significantly. It was observed that nitrogen, phosphorus and potassium content in soil is decreased at harvest and Boron and zinc availability in soil is highest after foliar spraying of Zn and B at 60 DAS.

Keywords: Watermelon, nutrient content, boron, zinc

Introduction

Watermelon [*Citrullus lanatus* (Thunb.)] is an important fruit crop among the various cucurbits grown in MH, for its sweet juicy fruits for quenching the thirst especially during summer. *Konkan* is narrow belt in between Arabian sea and Western Ghat having warm and humid climate. Agroclimatic condition during *rabi* season of Konkan region is ideal for watermelon cultivation. So that watermelon is grown popularly in *s* during *rabi* season due to its short duration, minimum tillage, less amount of labour and water requirement, better profitability within a short period (Fursa,1973)^[2].

Among several factors controlling the yield and profit of crops, plant nutrient is an important factor. Potassium helps to translocation of carbohydrates, increases disease resistance in plants and contract the injurious effect of nitrogen. These nutrient elements are necessary not only for crop yield but for the maintenance of soil nutrient and quality of produce. Foliar feeding is an effective method of supplying nutrients during the period of intensive plant growth when it can improve plants mineral status and increase crop yield. Zinc is main composition of ribosome and is essential for their development. Zinc required for chlorophyll production, pollen function and fertilization. Boron is important in pollen germination and pollen tube growth, which is likely to increase fruit set (Wojcik *et al.*, 2005)^[6]. Watermelon flowers are viable for a short period so that it is most important that supply of boron are not limiting during pollination. So that in order to see availability of nutrient in soil at various growth stage by the soil application of potassium and foliar spray of micronutrient present investigation was carried out.

Material and Methods

The experiment was conducted during *Rabi* 2013 at the Department of Agronomy, College of Agriculture, Dapoli. The experiment was laid out in factorial randomized block design with three replications and sixteen treatments based on different treatment combinations of potassium and micronutrient viz., K_0M_0 (control), K_1M_0 (25kg K₂O ha⁻¹, No foliar spray), K_2M_0 (50 kg K₂O ha⁻¹, No foliar spray), K_3M_0 (75 kg K₂O ha⁻¹, No foliar spray), K_0M_1 (0 kg K₂O ha⁻¹, 0.5% Zn foliar spray), K_1M_1 (25 kg K₂O ha⁻¹, 0.5% Zn foliar spray), K_3M_1 (75 kg K₂O ha⁻¹, 0.5% Zn foliar spray), K_0M_2 (0 kg K₂O ha⁻¹, 0.5% Zn foliar spray) (0 kg K₂O ha⁻¹),

0.1% B foliar spray), K_1M_2 (25 kg K_2O ha⁻¹, 0.1% B foliar spray), K_2M_2 (50 kg K_2O ha⁻¹, 0.1% B foliar spray), K_3M_2 (75 kg K_2O ha⁻¹, 0.1% B foliar spray), K_0M_3 (0 kg K_2O ha⁻¹, 0.5% Zn + 0.1% B foliar spray), K_1M_3 (25 kg K_2O ha⁻¹, 0.5% Zn + 0.1% B foliar spray), K_2M_3 (50 kg K_2O ha⁻¹, 0.5% Zn + 0.1% B foliar spray), K_3M_3 (75 kg K_2O ha⁻¹, 0.5% Zn + 0.1% B foliar spray). Recommended dose of nitrogen @ 150 kg ha⁻¹ and phosphorus @ 50 kg ha⁻¹ along with FYM @15 t ha⁻¹ was applied uniformly to all treatments and micronutrient was sprayed at flower initiation stage. Watermelon (NS-295) was sown during 2013 with the spacing 2m x 0.5m.

Result and discussion

Effect of soil application of potassium and foliar spray of zinc and boron on chemical properties of soil Soil pH

The individual effect of the K and foliar spray of Zn and B as well as interaction effect of both the factors found nonsignificant at 30 DAS 60 DAS stage. At harvest stage, the individual factors influenced non-significantly in soil reaction. But the interaction effect showed significance in change in soil reaction. The treatment K_1M_0 resulted the maximum pH value which was at par with K_0M_0 , K_0M_1 , K_2M_0 , K_3M_1 , K_3M_2 treatment combinations. Patil *et al.*, (2004)^[4] reported that pH ranged from (3.90-6.28) in the very high rainfall lateritic soil of Konkan region.

Electrical conductivity

The individual effect of the K and foliar spray of Zn and B as well as interaction effect of both the factors found non-significant at 30 DAS, 60 DAS and at harvest stage.

Organic carbon

At 30 DAS

Application of different levels of K, recorded highest organic carbon (15.88g kg⁻¹) of soil in the K₃ treatment, which found at par with K₀ treatment i.e. control. The highest organic carbon (15.72 g kg⁻¹) of soil in relation to the foliar spray of micronutrient was recorded in M₂ treatment which found at par with M₃ treatments

The interaction between effect of soil application of K and foliar spray of Zn and B showed significant result with respect to organic carbon of soil. The organic carbon of soil varied from 12.90 to 19.90 g kg⁻¹ in various treatment combinations, but highest organic carbon 19.90 g kg⁻¹ was observed in K_3M_3 treatment combination which was found significantly superior over rest of treatment combinations.

At 60 DAS

At 60 DAS, The individual effect of the potassium and foliar spray of Zn and B as well as interaction effect of both the factors found non-significant.

At harvest

At harvest, the individual effect of potassium and foliar sprays of micronutrients showed non-significant. The interaction effect of the both factors found significant. Highest organic carbon 18.50 g kg⁻¹ was found in K₂M₂ treatment combination which was found at par with K₀M₁, K₀M₂, K₀M₃, K₁M₁, K₁M₃, K₂M₀, K₂M₁, K₃M₀, K₃M₁, K₃M₂ treatment combinations.

Available nitrogen

At 30 DAS

The individual effect of K and foliar sprays of micronutrients showed non-significant. The significant results was obtained in the interaction between soil application of K and foliar spray of Zn and B at 30 DAS. Highest available nitrogen in soil was observed in K_1M_2 treatment combination which was found at par with K_2M_2 , K_2M_3 , K_3M_0 , K_3M_1 , K_2M_3 treatment combinations.

At 60 DAS

Regarding the application of different levels of potassium, it was observed that highest available nitrogen (300.60 kg ha⁻¹) in soil was recorded in K₂ treatment in which 50 kg K₂O ha⁻¹ was applied showed non-significant effect. The highest available nitrogen in soil (319.20 kg ha⁻¹) was recorded in M₃ treatment in which the 0.5% Zn +0.1% B was applied which found significantly superior over rest of treatments. The significant results was obtained with interaction of soil application of potassium and foliar spray of zinc and boron at 60 DAS. Highest available nitrogen (353.7 kg ha⁻¹) was observed in K₂M₃ treatment combination which was at par with K₃M₃ treatment combination.

At Harvest

Regarding the application of different levels of potassium, it was observed that numerically maximum available nitrogen (310.70 kg ha⁻¹) in soil was recorded in the K₃ treatment in which 75 kg K_2O ha⁻¹ was applied, but found non-significant. The highest available nitrogen in soil (325.10 kg ha⁻¹) was recorded in the M₃ treatment in which the 0.5% Zn + 0.1% B was applied which found significant over rest of treatments. The significant results was obtained with interaction of soil application of potassium and foliar spray of zinc and boron at harvest stage. Highest available nitrogen (353.30 kg ha⁻¹) was observed in K₃M₃ treatment combination which was at par with K₁M₂, K₂M₃ treatment combinations. Similar result obtained by Kolekar et al., (2013) [3] in watermelon, he reported that at harvest stage available N was (373.65 kg ha⁻ ¹). Similar results obtained by (Shivashankaramurthy et al., 2013) [5].

Available phosphorus At 30 DAS

Application of different levels of potassium, recorded highest available phosphorus (28.98 kg ha⁻¹) in soil in K₃ treatment in which 75 kg K₂O ha⁻¹ was applied which was statistically superior over rest of treatment. The highest available phosphorus (21.99 kg ha⁻¹) in soil was recorded in the M₀ treatment in which no foliar spray was taken which was found non-significant.

The non-significant results was obtained with interaction between soil application of potassium and foliar spray of zinc and boron at 30 DAS.

At 60 DAS

In the application of different levels of potassium, it was observed that the highest available phosphorus (26.42 kg ha⁻¹) in soil was recorded in the K_3 treatment in which 75 kg K_2O ha⁻¹ was applied which showed significant result over rest of treatments. The highest available phosphorus (21.06 kg ha⁻¹) in soil was recorded in the M_2 treatment in which the 0.1% B was applied which found at par with M_3 treatment. The significant results was obtained with interaction of soil application of potassium and foliar spray of zinc and boron regarding available phosphorus at 60 DAS.

Highest available phosphorus (29.14 kg ha⁻¹) was observed in K_3M_2 treatment combination which was at par with K_2M_0 , K_3M_1 , K_3M_3 treatment combinations.

At harvest

It was observed that the highest available phosphorus (20.09 kg ha⁻¹) in soil was recorded in the K₃ treatment in which 75 kg K₂O ha⁻¹ was applied which was at par with K₂ (50 kg K₂O ha⁻¹) treatment. In respect to the foliar spray of micronutrient, the highest available phosphorus (19.13 kg ha⁻¹) in soil was recorded in the M₃ treatment in which the 0.5% Zn +0.1% B was applied which found superior amongst all the treatments. The interaction effect was significant at harvest stage. Highest available phosphorus (26.80 kg ha⁻¹) was observed in K₂M₀ treatment combination which was found at par with K₃M₂ treatment combination. Similar results obtained by (Ambede 2008) ^[1] and Shivashankaramurthy *et al.*, 2013 ^[5].

Available potassium At 30 DAS

Application of different levels of potassium, recorded highest available potassium (266.5 kg ha⁻¹) in soil in K₃ treatment in which 75 kg K₂O ha⁻¹ was applied found significantly superior over rest of treatments. In relation to the foliar spray of micronutrient, the highest available potassium in soil (233.3 kg ha⁻¹) was recorded in the M₃ treatment in which the 0.5% Zn + 0.1% B was applied which found statistically significant over rest of all the treatments.

Interaction effect of soil application of potassium and foliar spray of zinc and boron showed significant result at harvest stage. Highest available potassium (316.4 kg ha⁻¹) was observed in K_3M_2 treatment combination i.e. 75 kg K_2O ha⁻¹ + 0.1% B was applied, which was found at par with K_3M_3 treatment combination.

At 60 DAS

Regarding the application of different levels of potassium, it was observed that highest available potassium (185.3 kg ha⁻¹) in soil was recorded in K₂ treatment in which 50 kg K₂O ha⁻¹ was applied, which was at par with K₃ treatment. The highest available potassium in soil (180.10 kg ha⁻¹) was recorded in M₃ treatment in which the 0.5% Zn + 0.1% B was applied through foliar spray but found non-significant.

The non-significant results was obtained with interaction between soil application of potassium and foliar spray of zinc and boron at harvest stage.

At Harvest

Regarding the application of different levels of potassium, it was observed that highest available potassium in soil (221.5 kg ha⁻¹) was recorded in K₃ treatment in which 75 kg K₂O ha⁻¹ was applied, which was significant over rest of treatment. The highest available potassium in soil (203.28 kg ha⁻¹) was recorded in M₁ treatment in which 0.5% Zn was applied which found at par with M₀ and M₃ treatments.

The significant results were obtained with interaction between soil application of potassium and foliar spray of zinc and boron at harvest stage. Highest available potassium (278.77 kg ha⁻¹) was observed in K₃M₁ treatment combination i.e. 75 kg K₂O ha⁻¹ +0.5% Zn which was found superior over all treatment combinations. Similar results obtained by (Ambede 2008)^[1] and Shivashankaramurthy *et al.*, 2013^[5].

DTPA extractable zinc At 30 DAS

Regarding the application of different levels of potassium, it was observed that highest DTPA-Zn content in soil (2.37 mg kg⁻¹) was recorded in the K_3 treatment in which 75 kg K_2 O ha⁻¹ was applied showed non-significant result. The highest

DTPA-Zn content in soil (2.41 mg kg⁻¹) was recorded in M_3 treatment in which foliar spray of 0.5% Zn +0.1% B was applied which was found at par with M_1 and M_2 treatments in which 0.5% Zn and 0.1% B was applied, respectively. The significant results was obtained with interaction between effect of soil application of potassium and foliar spray of zinc and boron at harvest stage. The highest DTPA-Zn content (2.73 mg kg⁻¹) in soil was observed in K₂M₃ treatment combination i.e. 50 kg K₂O ha⁻¹ and 0.5% Zn+0.1% B which was at par with. K₃M₁ and K₃M₃ treatment combinations.

At 60 DAS

Regarding the application of different levels of potassium, it was observed that highest DTPA-Zn content (2.75 mg kg⁻¹) in soil was recorded in the K₁ treatment in which 25 kg K₂O ha⁻¹ was applied which was at par with K₃ treatment i.e. 75 kg K₂O ha⁻¹ and 0.5% Zn +0.1% B. The highest DTPA-Zn content (2.87 mg kg⁻¹) in soil was recorded in the M₃ treatment in which the 0.5% Zn +0.1% B was applied which found at par with M₁ treatment in which 0.5% Zn was applied.

The non-significant results was obtained with interaction effect of soil application of potassium and foliar spray of zinc and boron. But the DTPA-Zn content in soil was ranged between $1.96 \text{ to} 2.78 \text{ mg kg}^{-1}$.

At Harvest

In application of different levels of potassium, it was observed that the highest DTPA-Zn content (2.91 mg kg⁻¹) in soil was recorded in the K₁ treatment in which 25 kg K₂O ha⁻¹ was applied which was found non-significant. The highest DTPA-Zn content (3.23 mg kg⁻¹) in soil was recorded in the M₃ treatment in which foliar spray of 0.5% Zn + 0.1% B was applied which found at par with M₁ treatment in which 0.5% Zn was applied.

The significant results was obtained with interaction between soil application of potassium and foliar spray of zinc and boron. Highest DTPA-Zn content (3.89 mg kg⁻¹) in soil was observed in K_1M_3 treatment combination which was found at par with K_2M_1 treatment combination. Results obtained was in the same ranged as given by Patil *et al.*, (2004) ^[4] they reported that Zn ranged from (0.29-3.25mg kg⁻¹) in the very high rainfall lateritic soil of Konkan region.

Hot water extractable boron At 30 DAS

In the application of different levels of potassium, it was observed that highest hot water extractable boron (0.23 mg kg⁻¹) in soil was recorded in the K₃ treatment in which 75 kg K₂O ha⁻¹ was applied which was at par with K₂ (50 kg K₂O ha⁻¹) treatment. The effect of Zn and B foliar spray influenced non-significantly in B content of soil.

The interaction showed significant results with soil application of potassium and foliar spray of zinc and boron. Highest hot water extractable boron (0.26 mg kg⁻¹) was observed in K₃M₃ treatment combination i.e. 75 kg K₂O ha⁻¹ and 0.5% Zn+0.1% B was applied which was found at par with K₁M₀, K₂M₀, K₂M₂, K₂M₃, K₃M₁, K₃M₂ treatment combinations.

At 60 DAS

The highest hot water extractable boron (0.28 mg kg⁻¹) in soil was recorded in the M_2 treatment in which 0.1% B was applied which found at par with M_3 treatment in which 0.5% Zn + 0.1% B was applied. However the effect of soil

application of potassium levels and interaction effect found non-significant. But the hot water extractable boron in soil was ranged between from 0.20 to 0.28 mg kg⁻¹ in different treatment combinations.

At Harvest

was recorded in the M_3 treatment in which foliar spray of 0.5% Zn + 0.1% B was applied which found at par with M_2 treatment. But the effect of soil application of potassium levels and interaction effect of both factors found non-significant with respect to hot water extractable boron in soil at harvest stage.

Table 1: Effect of soil a	pplication of pota	assium and foliar spray	y of zine and boron o	on pH of soil
Lable L. Entet of Son a	ppincation of pou	issium and romai spray	y of Line and boron (JII pri or son

Treatments		pH (1:2.5)														
Treatments			30 DA	S				60 DA	S		At Harvest					
	M ₀	M_1	M_2	M 3	Mean	M ₀	M ₁	M_2	M ₃	Mean	M ₀	M_1	M_2	M ₃	Mean	
K_0	6.06	6.23	6.33	6.13	6.19	6.20	6.20	6.13	6.13	6.16	6.16	6.13	6.06	6.06	6.10	
K 1	6.23	6.26	6.10	6.20	6.20	6.06	6.10	6.13	6.16	6.11	6.23	5.96	6.06	6.03	6.07	
K2	6.13	6.23	6.20	6.20	6.19	6.16	6.06	6.20	6.20	6.15	6.10	6.06	6.06	6.03	6.06	
K ₃	6.23	6.13	6.10	6.26	6.18	6.23	6.10	6.10	6.11	6.13	6.03	6.13	6.16	6.03	6.09	
Mean	6.16	6.21	6.18	6.20		6.16	6.11	6.14	6.15		6.13	6.07	6.09	6.04		
	K		М		KXM	K		М		KXM	K		М		KXM	
S.E. <u>+</u>	0.03		0.03		0.07	0.02	2	0.02		0.05	0.02	2	0.02		0.04	
C.D(P=0.05)	NS		NS		NS	NS		NS		NS	NS		NS		0.13	

 Table 2: Effect of soil application of potassium and foliar spray of zinc and boron on electrical conductivity of soil

Treatmonte		Electrical conductivity (dS m ⁻¹)															
Treatments			30 D.	AS				60 I	DAS			At Harvest					
	M ₀	M_1	M_2	M 3	Mean	M ₀	M_1	M_2	M ₃	Mean	N	Io I	M1	M_2	M ₃	Mean	
K_0	0.17	0.34	0.20	0.410	0.28	0.34	0.29	0.12	0.49	0.31	0.	35 0	.26	0.38	0.42	0.35	
K ₁	0.47	0.44	0.31	0.47	0.42	0.44	0.20	0.26	0.25	0.28	0.	34 0	.44	0.50	0.36	0.41	
K ₂	0.34	0.46	0.37	0.48	0.41	0.30	0.17	0.22	0.45	0.28	0.	37 0	.51	0.61	0.29	0.44	
K3	0.34	0.38	0.38	0.44	0.38	0.26	0.29	0.45	0.53	0.38	0.	30 0	.32	0.54	0.34	0.37	
Mean	0.33	0.40	0.32	0.45		0.34	0.24	0.26	0.43		0.	34 0	.38	0.51	0.35		
	K		Μ		KXM	K		М		KXM		K		М		KXM	
S.E. <u>+</u>	0.04	ŀ	0.04		0.09	0.05	5	0.05		0.10		0.04		0.04		0.09	
C.D (P=0.05)	NS		NS		NS	NS		NS		NS		NS		NS		NS	

Table 3: Effect of soil application of potassium and foliar spray of zinc and boron on organic carbon in soil

Treatments	Organic carbon (g kg ⁻¹)																
Treatments			30 DAS	5					60 D A	AS			At Harvest				
	M ₀	M ₁	M_2	M ₃	Mean	M ₀	Μ	[1	M_2	M ₃	Mean	M ₀	M ₁	M_2	M3	Mean	
K_0	14.00	14.70	17.47	13.10	14.82	13.00	13.0	00	12.60	11.90	12.63	12.50	18.30	18.00	16.10	16.23	
K 1	14.20	15.60	13.70	14.70	14.55	12.50	13.0	67	12.80	13.97	13.23	13.30	14.20	10.90	15.20	13.40	
K ₂	14.10	12.90	15.30	13.00	13.83	13.00	10.3	80	13.20	14.50	12.88	18.10	13.97	18.50	12.00	15.64	
K 3	14.10	13.10	16.40	19.90	15.88	13.30	13.	50	13.30	13.97	13.52	15.80	15.60	16.60	12.70	15.18	
Mean	14.10	14.08	15.72	15.18		12.95	12.7	74	12.98	13.58		14.93	15.52	16.00	14.00)	
	K		М		KXM	K			М		KXM	K		М		KXM	
S.E. <u>+</u>	0.45	5	0.45		0.90	0.51			0.51		1.03	0.84	1	0.84		1.69	
C.D (P=0.05)	1.30)	1.30		2.61	NS			NS		NS	NS		NS		4.892	

Table 4: Effect of soil application of potassium and foliar spray of zinc and boron on available nitrogen status in soil

Treatments	Available nitrogen (kg ha ⁻¹)																	
Treatments			30 DAS	5				6	60 DAS			At Harvest						
	M ₀	M_1	M_2	M ₃	Mean	M ₀	Μ	1	M_2	M ₃	Mean	M ₀	M ₁	M_2	M 3	Mean		
K ₀	333.5	313.5	354.4	330.4	332.9	277.0	283	.3	308.4	306.3	293.7	283.3	300.0	314.6	301.1	299.7		
K 1	320.8	331.4	368.0	323.0	335.8	274.9	296	i.9 1	316.7	282.2	292.7	282.2	304.2	333.5	294.8	303.7		
K2	315.6	332.4	340.8	364.8	338.4	277.0	272	.8	299.0	353.7	300.6	270.7	285.7	313.6	351.2	305.3		
K ₃	351.2	340.8	305.2	366.9	341.0	279.1	297	.8	268.7	334.5	295.0	316.7	303.1	269.7	353.3	310.7		
Mean	330.3	329.5	342.1	346.3		277.0	287	.7	298.2	319.2		288.2	298.3	307.8	325.1			
	K		М			K	K		М		KXM			М		KXM		
S.E. <u>+</u>	5.54		5.54		11.09	4.37	'		4.37		8.74	5.51		5.51		11.03		
C.D (P=0.05)	NS		NS		32.02	NS			12.63		25.26	NS		15.93		31.87		

Table 5: Effect of soil application of potassium and foliar spray of zinc and boron on available phosphorus status in soil

Tracetore	Available phosphorus (Kg ha ⁻¹)																		
Treatments			30 DAS	5					60 D A	٩S				At Harvest					
	M ₀	M_1	M2	M 3	Mean	M ₀	Μ	[1	M_2	Μ	3	Mean	N	I 0	M_1	M_2	M 3	Mean	
K ₀	11.22	10.55	11.22	12.7	3 11.43	11.22	10.	55	11.39	11.0)6	11.05	10.	.55	10.38	11.22	10.0	4 10.55	
K 1	18.60	18.93	23.45	24.4	6 21.36	13.74	14.	07	21.27	18.5	59	16.92	10.	.38	11.05	19.26	21.2	7 15.49	
K2	27.47	21.62	22.78	21.6	1 23.37	25.96	14.	40	22.45	24.9	96	21.94	26.	.80	13.73	15.74	22.6	1 19.72	
K3	30.65	28.98	28.31	27.9	7 28.98	24.46	25.	46	29.14	26.0	53	26.42	14.	.07	18.76	24.96	22.5	3 20.09	
Mean	21.99	20.02	21.44	21.6	9	18.84	16.	12	21.06	20.3	31		15.	.45	13.48	17.79	19.1	3	
	K		М		KXM	K			М			KXM		K		М		KXM	
S.E. <u>+</u>	0.98		0.98		1.96	0.72			0.72			1.45		0.5	1	0.51		1.01	
C.D (P=0.05)	2.83		NS		NS	2.09		2.09			4.18			1.46		1.46		2.93	

Table 6: Effect of soil application of potassium and foliar spray of zinc and boron on available potassium status in soil

Treatments	Available potassium (kg ha ⁻¹)																
Treatments			30 DAS	5				60 D	AS				At Harvest				
	M ₀	M_1	M_2	M 3	Mean	M ₀	M_1	M_2	M ₃	Mean	N	10	M_1	M_2	M3	Mean	
K ₀	127.7	128.4	123.2	141.1	130.1	133.7	136.6	146.3	182.6	149.8	152	2.69	153.64	4 177.96	149.33	158.41	
K 1	215.3	161.3	169.9	209.1	188.9	145.6	154.6	166.1	164.6	157.7	173	3.23	154.93	3 142.18	175.84	161.55	
K ₂	219.1	178.5	211.2	286.7	223.9	185.9	196.4	183.0	175.8	185.3	201	1.97	225.70	5 157.05	200.85	196.41	
K ₃	228.9	224.5	316.4	296.4	266.5	163.9	171.7	194.4	197.3	181.8	206	5.08	278.7	7 194.51	206.71	221.52	
Mean	197.7	173.2	205.2	233.3		157.3	164.8	172.5	180.1		183	3.49	203.28	8 167.93	183.18		
	K		М]	KXM	K		М		KXM		K		М		KXM	
S.E. <u>+</u>	4.14		4.14		8.28	6.35	i	6.35		12.71		7.2	26	7.26		14.52	
C.D (P=0.05)	11.9	5	11.96		23.92	18.3	5	NS		NS		20.	97	20.97		41.95	

Table 7: Effect of soil application of potassium and foliar spray of zinc and boron on DTPA- extractable Zn in soil

Treatmonta	Zinc (mg kg ⁻¹)														
Treatments			30 DA	S				60 DA	S				At Harv	est	
	Mo	M_1	M_2	M 3	Mean	Mo	M_1	M_2	M 3	Mean	M ₀	M_1	M_2	M 3	Mean
K_0	2.23	2.12	2.38	2.00	2.19	1.99	2.50	2.17	2.59	2.31	2.28	2.92	2.36	3.14	2.67
K ₁	2.17	2.36	2.37	2.34	2.31	2.74	3.32	2.15	2.78	2.75	2.62	2.78	2.36	3.89	2.91
K ₂	2.26	2.03	2.23	2.73	2.31	2.33	2.74	1.96	2.78	2.45	2.19	3.50	2.55	2.79	2.76
K3	2.07	2.48	2.33	2.58	2.37	2.14	2.90	2.36	3.33	2.68	2.17	3.18	2.35	3.10	2.70
Mean	2.18	2.25	2.33	2.41		2.30	2.86	2.16	2.87		2.32	3.09	2.41	3.23	
	K		М		КХМ	K		М	KXM		K		М		KXM
S.E. <u>+</u>	0.0	6	0.06		0.11	0.1	0	0.10	0.19		9 0.08		0.08		0.17
C.D (P=0.05)	NS	S	0.16		0.32	0.2	8	0.28		NS	N	S	0.24		0.48

Table 8: Effect of soil application of potassium and foliar spray of zinc and boron on hot water extractable boron in soil

Truestantes		Boron (mg kg ⁻¹)													
Treatments			30 DA	S				60 DA	S			At Harvest			
	M ₀	M_1	M_2	M ₃	Mean	M_0	M_1	M_2	M ₃	Mean	M ₀	M_1	M_2	M ₃	Mean
K_0	0.20	0.21	0.19	0.21	0.20	0.20	0.22	0.27	0.27	0.24	0.18	0.19	0.21	0.23	0.20
K ₁	0.22	0.19	0.20	0.17	0.20	0.22	0.22	0.28	0.25	0.24	0.19	0.19	0.21	0.23	0.21
K2	0.23	0.21	0.24	0.22	0.22	0.23	0.23	0.28	0.26	0.25	0.19	0.22	0.23	0.20	0.21
K3	0.19	0.23	0.22	0.26	0.23	0.24	0.22	0.28	0.26	0.25	0.20	0.19	0.24	0.25	0.22
Mean	0.21	0.21	0.21	0.22		0.22	0.22	0.28	0.26		0.19	0.20	0.22	0.23	
	K		Μ		KXM	K		М		KXM	K		Μ		KXM
S.E. <u>+</u>	0.01		0.01		0.01	0.01	l	0.01		0.01	0.01	-	0.01		0.01
C.D (P=0.05)	0.02	2	NS		0.04	NS		0.02		NS	NS		0.02		NS

Conclusions

The available primary nutrients as well as micronutrients (Zn and B) in soil at various growth stages influenced significantly due to application of 75 kg K_2O ha⁻¹ through soil along with 0.5% Zn and 0.1% B through foliar application.

Reference

- 1. Ambede PP. Effect of integrated nutrient supply system on yield and nutrient uptake by bittergourd (*Momordica charantia* L.) and changes in properties of lateritic soil. Thesis submitted to B.S.K.K.V. Dapoli. (unpublished), 2008.
- 2. Fursa TB. On the history of the introduction of watermelon in to cultivation. Trudy po Prikladnoi Botanike, Genetike I Seletsii USSR. 1973; 49(2):62-69.
- Kolekar AB, Murumkar SB, Shinde PP. Effect of spacing, fertilizer and manure levels on watermelon (*Citrullus lanatus*) grown with drip and black polythene under lateritic soils of Konkan. J Agric. Res. Technol. 2013; 38(2):182-187.
- Patil KD, Masheri MB. Mineralogical studies and DTPA extractable Zn, Cu, Mn and Fe in representative soils of Konkan Region. J Maharashtra agric. univ. 2004; 29(1):004-008.
- 5. Shivashankaramurthy TC, Nagegowda VB, Farooqui AA. Influence of nitrogen, phospharus and potassium on

International Journal of Chemical Studies

the yield and quality of gherkin. Indian J Hort. 2007; 64(2):228-230.

6. Wojcik P. Response of Primocane-fruiting polana red raspberry to boron fertilization. J Plant Nutri. 2005; 28:1821-1832.