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Abstract 

Recently, the rapid growth of the space-oriented imaging techniques with the tremendous remote sensors 

facilitates the earth observation in the spatial and spectral domain. The Hyperspectral Images (HSI) have 

the ability to deliver the detailed information of earth in such domains. An accurate identification of 

objects from the acquisition system depends on the clear segmentation and classification. Traditionally, 

clustering and rules-based methods are adopted for classification according to the thresholding effect of 

image pixel intensity. The clustering process depends on the mean feature of the image pixels with the 

gray limit. With the spectral limitations, the multi-label segmentation problem affects the clustering and 

rules adversely. The variations in spectrum cause the changes in the number of rules each and every time 

that leads to computational complexity and misclassification. This paper proposes the novel classification 

method based on the textural information obtained from the Extended Differential Pattern (EDP). 

Initially, the Distributed Intensity Filtering (DIF) removes the noise present in the image and the 

application of Histogram Equalization (HE) enhances the image quality. The merging and classification 

of different labels for each image sample are performed through the Extended Differential Pattern (EDP) 

provides the textural information clearly. With these pattern set, the traditional active learning methods 

such as Relevance Vector Machine (RVM) and the multi-class SVM classify the HSI patterns that play 

the major role in remote sensing applications. The comparative analysis between the proposed EDP-AL 

with the existing algorithms regarding the various parameters overall accuracy, average accuracy and 

kappa statistics conveys the effectiveness of EDP-AL in remote sensing applications. 

 

Keywords: Active learning, classification, hyperspectral images, multi-class support vector machine 

 

Introduction 

Computer vision applications depend on the good set of labeled image for deep analysis. The 

classification of images is the long history research area in such applications to facilitate the 

accurate object identification from the acquisition system. The prediction of categories and the 

location of objects is the fundamental research problem in the remote sensing applications. The 

creation of good quality training sets with the large size labeled samples requires the 

substantial human effort. In another aspect, the construction of robust classifier depends on the 

large size training samples. But, this is a time and cost consuming process. Hence, the trade-

off between the best classification and the minimum training samples is the major requirement 

in the HSI classification.  

The introduction of active learning methods [1] in the research supports the built up of the 

robust classifier with minimum labeling. But, the good classifier training with the minimal 

labeling cost is the critical task with machine learning algorithms.  

The selection of either non-informative or redundant instances induces the difficulties in 

random selection of unlabeled instances to label it. Hence, the evaluation methods of 

informativeness of the labeled instances are applicable to reduce the human effort. The 

selection of informative regions in the HSI requires most uncertainty measures with the 

capture of relationship between the candidate instances and the classification model in real-

time scenarios [2]. This causes the unusual instances for labeling. Hence, the development in 

active learning model should consider the representativeness of the candidate according to 

uncertainty features. The numerous developments PF the acquisition models increase the 

spatial-spectral and temporal resolution imaging systems drastically to improve the 

classification performance. 
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The data analysis and the accurate classification requires the 

implementation of several processing techniques. The 

developed classification techniques are grouped into two 

categories [3] such as unsupervised and supervised. First one 

deals with the division of image into clusters of pixels with 

the similar characteristics. Decompose of image into clusters 

is independent of the labeled information by the user. But, the 

lack of correspondence between the clusters makes the 

difficulties in the class separation. Alternatively, the 

establishment of link between the samples and classes 

explicitly provides the guarantee of accurate classification. 

But, the manual training sample collections is an obvious 

problem and thus leads to a semi-automatic training sample 

selection in which the most useful information is selected on 

the basis of ranking.  

The dependency of samples with the class is based on their 

own attributes. The attributes of HSI classification are 

affected by two factors [4] as follows: 

 Determination of reflectance spectra through the object 

and surrounding materials 

 Spectral deviation due to the noise from the remote 

sensing devices. 

 Environmental factors with viewing angle 

 

Besides the spectral information, the spatial information such 

as shape, texture and profile features are necessary to measure 

the dependence of samples with the class. Morphological 

Profiles (MP), Support Vector Machine (SVM) and Gray 

Level Co-occurrence Matrix (GLCM) –based models convey 

that the spatial information plays the major role in the 

classification of high –resolution images in remote sensing 

data. With increase in data dimension, the number of spatial 

features corresponding to those images also more such as 

morphological features, GLCM features, wavelet-based 

features, object-based features and the structural features [5]. 

Hence, the prediction of optimal features or relevant features 

for better classification is the important task. The addition of 

more number of features and the hyperdimensional feature 

space require the multi-feature analysis models to improve the 

classification performance. The development of AL methods 

considered general purpose irrespective of the real annotation 

cost-oriented procedures that depend on the application. The 

better annotation process depends on the most informative 

samples selection from the large size information pools. The 

summary of traditional methods conveys that the novel 

learning models are required to provide the trade-off between 

the cost effectiveness and the accurate classification. This 

paper employs the suitable texture pattern extraction method 

to select the most useful information that governs the deep 

analysis. The technical contributions of proposed EDP-AL are 

listed as follows: 

 The employment of Distributed Intensity Filtering (DIF) 

and the Histogram Equalization (HE) removes the noise 

and enhances the quality of images for clear depth 

information 

 An Extended Differential Pattern (EDP)-based texture 

pattern extraction supports the merging and classification 

of labels under the fusion of spectrum bands 

 The utilization of novel classifiers such as RVM and 

Multi-class SVM validates the performance of EDP-

based texture pattern extraction in terms of classified 

samples.  

 

The paper organized as follows: The detailed description of 

the related works on learning and classification models under 

spectral-spatial domains arediscussed in section II. The 

implementation process of Extended Differential Pattern 

(EDP)-based Active Learning (AL) is described in section III. 

The comparative analysis of EDP-AL with existing methods 

provided in section IV. Finally, the conclusions about the 

application of EDP-AL on the remote sensed data presented 

in section V.  

 

Related work 

This section discusses the review of traditional classification 

and learning models for HSI under the spectral-spatial 

variations. The uncertainty query selection-based procedures 

failed to extract the useful information from the large size 

unlabeled instances. Li et al. [2] presented the adaptive 

learning that combined the density and uncertainty measures 

together to select the critical instances for labeling. The 

validation of adaptive learning was performed through object 

and scene recognition. The formulation of AL framework 

dependent on both spectral and spatial domain. Pasolli et al. 
[3] utilized the iterative sample selection methodologies to 

integrate the spatial and spectral features. The explicit 

computation of Euclidean distance and the Parzen window-

based spatial domain analysis included the spatial entropy to 

handle the high-resolution images. The widely used HSI 

classification method with the limited training samples called 

semi-supervised learning. Ma et al. [4] presented the novel 

semi-supervised classification on the basis of multi-decision 

labeling and deep feature learning. The exploitation of more 

information was the basic need of better classification. The 

simultaneous provision of plentiful spatial-spectral features 

increases the resolution of remotely sensed imagery. Huang et 

al. [5] constructed the SVM ensemble model that combined the 

multiple spatial-spectral features under both pixel and object 

levels. They proposed multi-feature SVMs (certainty voting, 

urban complexity index and the object-based semantic 

approach providing the accurate results.  

An efficient object detection depends on the robustness to the 

appearance variations for the object. The trade-off between 

the detection with fewer models and the high operational 

speed was the major requirement in remote sensing 

applications. Ohn-Bar et al. [6] studied the efficient means for 

dealing with the intra-diversity in object detection. The 

employment of AdaBoost detection scheme with pixel look-

up features improved the operational speed. The extraction of 

noticeable objects with limited computational resources 

considers the saliency detection as the major task in the field 

of vision community. Wang et al. [7] utilized the Manifold 

Ranking (MR) to reduce the limitations in the salient band 

selection methods. An access of hyperspetcral data structure 

rather than similarity rating through MR provided the solution 

to the ranking problem. The challenging task in the Active 

Learning (AL) was the selection of most informative samples 

from the data. Babae et al. [8] proposed the novel AL 

algorithm based on low-rank classifier as the training model 

and the visualization support data point selection called First 

Certain Wrong Labeled (FCWL). The composition of logistic 

regression loss function and the trace-norm learning 

parameters improved the classification performance. An 

automated selection of positive and negative samples of 

multiple parts requires the modification in AL approaches. 

Stazoda et al. [9] presented the Vehicle Detection using Active 

learning Symmetry (VeDAS) model that utilized the Haar-

like features and the AdaBoost classifiers to detect fully 

visible parts. The integration of AL models with the semi- 

supervised methods reduces the effort of constructing training 
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sets for classification. Polewski et al. [10] enabled the efficient 

optimization model through the generalization of 

Deterministic Annealing Expectation Maximization (DAEM) 

algorithm for the application of Renyi-regularized model to 

reduce the expected error.  

The replacement of human oracle with the tags representing 

image makes the AL method as an automated to handle the 

social context model. Chatzillari et al. [11] presented the Social 

Active Learning for Image Classification (SALIC) to select 

most appropriate tagged images that expand the training set 

necessary for complexity reduction. The joint maximization 

of informativeness and associated confidence level were 

achieved through the probabilistic framework. The 

susceptibility to noise or irrelevant features and the lack of 

statistical irregularities affected the prediction of the weight 

value of each kernel. Li Li et al. [12] addressed the limitations 

in Distance Metric Learning (DML) to learn the matrix 

without considering the weight of each class. They proposed 

the dual layer supervised Mahalanobis kernel for the 

classification of images. They utilized the SVM-classifier to 

classify the less-dimensionality data with better performance. 

Limited labeled samples and the spatial variability of spectral 

signatures were the major limitations in addition to the 

dimensionality. Soomro et al. [13] proposed the novel bilayer 

Elastic Net (ELN2) regression model for classification of 

hyperspectral images with the spatial-spectral information 

exploitation. The novel bilayer ELN2 contained two 

components namely spectral-only ELN and the spatial 

contextual driven ELN in two layers. The features extracted 

from the hyperspectral images represent the diverse 

characteristics and their combination has the positive impact 

on the classification performance. Zhang et al. [14] formulated 

the multi-feature HSI classification model as the joint sparse 

constraint model. They preserved spatial information and 

utilized the complementary information additionally 

supported the real-time applications. With the increase of 

features, suitable kernel model called Multiple Kernel 

Learning (MKL) was introduced to improve the classification 

performance. Pre-determination of parameters plays the major 

role in MKL and they require the prior knowledge about the 

results that leads to complexity. Liu et al. [15] concentrated on 

the embedding of Extended Multi-Attribute Profile (EMAP) 

in MKL specific model. They proposed the class specific 

algorithm that automatically learns the efficient feature set 

which is necessary for classification. 

Real-annotation procedures and the costs were considered to 

minimize the number of samples to be labeled and added to 

the training set. The major assumption to implement 

annotation procedure was all the samples require the equal 

effort for labeling. Persello et al. [16] addressed the problem in 

active sample selection based on Markov Decision Process 

(MDP). Besides, they addressed the optimizing the collection 

of labeled samples and showed the effectiveness of the MDP 

on the forest inventory controlling. Collaborative 

Representation (CR) generated the non-sparse codes by using 

all the atoms leads to interferences. Sparse Representation 

(SR) selected few samples which cannot reflect within the 

class variations. Hence CR and SR were combined in the 

research studies to alleviate the problems. Li et al. [17] 

proposed the fusion of CR and SR on the basis of two 

following methods: Fusion Representation based 

Classification (FRC) and the Elastic Net Representation based 

Classification (ENRC). The convex combinations of penalties 

(𝑙1, 𝑙2) used by the ENRC to achieve the balance between CR 

and SR models. Arabi et al. [18] employed definition of typical 

sets from the Asymptotic Equipartition Property (AEP) for 

HSI classification. Decompose of end members through 

Discrete Wavelet Transform (DWT) and the Hidden Markov 

Model (HMM) facilitated the better classification 

performance. The accuracy of HSI classification required 

further improvement which depends on the multi-hypothesis 

prediction model. Chen et al. [19] proposed the spectral band 

partitioning strategy on the basis of inter-band correlation 

coefficient to improve the representation power. The 

integration of spatial and spectral information modeled as the 

hypothesis predictions by Tikhonov regularization 

framework. Under small sample size constraints and noise 

corruption environment, the classification accuracy and the 

maximum likelihood were increased. The segmentation of 

Infrared images requires the prior information regarding the 

shape and appearance of dead trees. The lack of 3D height 

information leads to confusing dead trees with patches of 

ground areas. Polewski et al. [20] described the AL-based 

approach to detect the standing dead trees from the infrared 

imagery. The segmentation of individual trees within the 3D 

point cloud and the prediction of approximate bounding 

polygon for each tree within the image through greedy 

approximation improved the classification performance.  

With the increase in the dimensionality of features, the 

prediction of optimal feature which is adaptable to all the 

images was the complicated task. Chunsen et al. [21] proposed 

the probabilistic weighed fusion method of multiple features 

for hyperspectral image classification. They conducted the 

dimensionality reduction and the feature extraction through 

minimum noise fraction. The non-linear mapping of input 

data to the high-dimensional feature space in kernel methods 

improved the classification performance. Zhang et al. [22] 

presented the spectral-spatial learning methods to integrate 

those information into the Group Sparse Coding (GSC) 

through clusters. The incorporation of kernel trick into GSC 

supported the capture of non-linear relationships. The 

multiple classifiers, lack of creating single models from the 

complex data structure and the ingenius design effort were the 

major limitations from the literature studies. Zhang et al. [23] 

presented the novel sparse ensemble learning algorithm with 

the integrated spatial and spectral features to develop the joint 

sparse representation models. Among various AL approaches, 

the Multi-View (MV)-based AL plays the major role in object 

detection in remote sensing applications. Zhou et al. [24] 

highlighted the features that affect the efficiency of MV-Al 

such as a number of samples to be reduced, the quick 

convergence of learning process, disagreement among the 

multiple views and the simple model without any 

assumptions. They employed singularity-based criterion to 

identify the most informative pixels from the remotely sensed 

data. The incorporation of disparate features from the several 

sources provide the diverse information for remote sensing 

data analysis. Zhang et al. [25] proposed the ensemble MKL 

model that included the multiple features from the multi-

sensors-based HSI classification. Wan et al. [26] proposed 

Collaborative Active and Semi supervised Learning (CASSL) 

that combines the AL and Semi-Supervised Learning (SSL) to 

improve the learning performance compared to multiclass 

level uncertainty-enhanced cluster-based diversity (MCLU-

ECBD) [27], locally linear embedding (LLE) with manifold 

Co-Regularization (LLE-mCR) [28] and CASSL-No Pseudo 

Label Verification (NoPLV) [26]. The adequate learning with 

less time consumption is an investigating issue in the HSI 

classification in recent researches. Sun et al. [29] discussed the 

Gaussian Process (GP)-Al approach with various versions 

http://www.chemijournal.com/
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such as GP-full, GP-Init, GP-Random Selection (RS), GP-

AL1, GP-AL2 and GP-AL3 heuristics. With the increase in 

feature size, the prediction of relevant features from the large 

size is the difficult task. This paper proposes the novel 

learning models based on the Extended Differential Pattern 

(EDP)-based texture pattern extraction to improve the 

classification performance.  

 

Extended-differential pattern-active learning model 

This section discusses the implementation details of proposed 

Extended Differential Pattern (EDP)-based Active Learning 

(AL) for remote sensing applications. The simultaneous 

achievement of large size training samples and better 

classification depends on following models in proposed work 

as shown in Fig. 1.  

1. Distributed Intensity Filtering 

2. Extended Differential Pattern 

3. RVM classification  

 

The low-quality images with the noise existence affect the 

depth information which plays the major role in hyperspectral 

image classification. Initially, the preprocessing through the 

Distributed Intensity Filtering (DIF) removes the noise 

present in the images and the integration of Histogram 

Equalization (HE) enhances the quality of image for clear 

depth information analysis. Then, the texture pattern 

information extraction is the important stage in proposed 

work. The Extended Differential Pattern (EDP) method 

extracts the necessary texture patterns which highly contribute 

to relevant information for analysis. With the extracted 

pattern set, the RVM classifier is used to classify the samples 

which are necessary for vision data analysis. The comparison 

between the proposed EDP-based AL models with the multi-

class SVM models regarding the various parameters of 

accuracy, sensitivity, specificity, positive likelihood, negative 

likelihood and classification rate conveys the effectiveness of 

proposed EDP-AL models.  

 

 
 

Fig 1: Workflow of proposed EDP-AL 

 

Distributed intensity filtering 

The noise present in the input image as shown in Fig. 2 

affects the quality of edge information that leads to 

misclassification and limits the useful information prediction. 

To remove the noise present in the image, the window with 

the size of 3×3is formed to project the input image. Fig. 3 

shows the image projection window.  

 

 
 

Fig 2: Input Image 

 
W(1) W(2) W(3) 

W(4) W(5) W(6) 

W(7) W(8) W(9) 
 

Fig 3: Projection Window 

 

The Distributed Intensity Filtering (DIF) is proposed to 

remove the noise present in the image. The major processes in 

this filtering are listed as follows: 

 Placing the neighborhood around the point to be analyzed 

 Analyze the pixel intensities of neighborhood with the 

center value 

 Replace the original pixel value with the analyzed result 

from the previous step.  

 

Initially, the window is constructed for the image with the 

row values from 𝑖 − 1 𝑡𝑜 𝑖 + 1 and the column values 

from𝑗 − 1 𝑡𝑜 𝑗 + 1. Then, the neighborhood moves over the 

each pixel in the image successively to predict the 

replacement value. The difference between the center pixel 

with the boundary is initially estimated and check whether 

such difference value is greater than the center pixel or not. If 

the condition is satisfied, then replace the pixel value by using 

the average value of window elements as follows: 

 

𝐼𝑝(𝑖, 𝑗)=
∑ 𝑊𝑡𝑒𝑚𝑝

𝑛
      (1) 

 

Where, 𝐼𝑝(𝑖, 𝑗)= Preprocessed image 

 

𝑊𝑡𝑒𝑚𝑝 = (𝑊(𝑥), ′𝑥′ ≠ 𝑐𝑒𝑛𝑡𝑒𝑟) 

 

𝑛 = Total number of neighborhoods 
 

Distributed intensity filtering 

Input: Load Hyper spectral Image ‘I’ 

 

Output: Preprocessed Image, ‘𝐼𝑝’ 

Step 1: Initialize window size (3×3). 

Step 2: for (i = 2 to𝑅𝑜𝑤_𝑆𝑖𝑧𝑒 (𝐼) − 1)  //’i’ Row value 

Step 3: for (j = 2 to𝐶𝑜𝑙𝑢𝑚𝑛_𝑆𝑖𝑧𝑒 (𝐼) − 1) //’j’ Column value 

Step 4: W=𝐼𝑖−1 𝑡𝑜 𝑖+1,𝑗−1 𝑡𝑜 𝑗+1 

//Project window over image matrix as, W 

Step 5: if ((𝑊 (5) ~ 𝑊 (𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦)) >𝑊 (5)) 

//Check neighboring Pixel variation. 

Step 6:  Compute the preprocessed output 

 

𝐼𝑝 (i, j) =
∑ 𝑊𝑡𝑒𝑚𝑝

𝑛
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Step 7: end if 

Step 8: end loop ‘j’ 

Step 9: end loop ‘i’ 

 

Once the neighborhood values are replaced with the estimated 

value reduces the noise present in the image. Hence, the 

output from the DIF process contains less noise as shown in 

Fig. 4. The interpretation of information present in the image 

not only depends on the noise-free regions of image. The 

quality of the image is further enhanced for clear analysis of 

images. The Gaussian modelling is applied to enhance the 

quality of the input image. The standard deviation in the 

traditional Gaussian model [30] is reformulated with the Root 

Mean Square (RMS) value of the difference between each 

pixel with the overall pixel value as follows: 

 

𝜎 =  √ 1

𝑎∗𝑏
∑ (𝐼𝑝(𝑖) −

∑ 𝐼𝑝

𝑎
)

2
𝑎∗𝑏
𝑖=1     (2) 

 

Where, 𝑎, 𝑏 −Row and column size of the images  

 

  
 

Fig 5: (a) Filtered Image (b) Enhanced Image 

 

The quality of the image is enhanced with the modified 

standard deviations from equation (2) as follows 

 

𝐼𝑒 =
𝐼𝑝

max(𝐼𝑝(
∑ 𝐼𝑝

𝑎
∗𝜎))

     (3) 

 

The pixel values of original input image are normalized with 

the maximum mean values from the enhanced image to 

provide the good quality image necessary for future 

processing.  

 

Extended differential pattern  

In this stage, the window size is extended to 5 × 5 for 

projection of enhanced image. Then, the median value of 

projected image is computed. Initially, the window over the 

enhanced image is formed with the size of 5×5. Within this 

window, the cells with 3×3 is extracted separately. By 

applying the angle-based difference estimation, the rules 

required for the vector prediction is formed. The algorithm to 

compute the patterns in multi-angular form is listed in this 

section. 

The magnitude value corresponding to the difference between 

the window formation (temp, temp1) are mathematically 

expressed as follows: 

 

𝑚𝑎𝑔 = √(𝑑𝑜𝑢𝑏𝑙𝑒 (
((𝑡𝑒𝑚𝑝(3,4)~𝑡𝑒𝑚𝑝(3,3))

2
) +

((𝑡𝑒𝑚𝑝(2,3) ~𝑡𝑒𝑚𝑝(3,3))
2

)
))  (4) 

The comparison between the center pixel with the 

neighboring pixels is performed and then the decimal coding 

is performed to extract the patterns. The multiplication is 

performed with two types of patterns (𝑃𝑡2, 𝑃𝑡1) that extract 

the relevant patterns. These relevant patterns are considered 

as the major role in classification.  

 

Extended differential pattern 

Input: Enhanced Image ‘𝐼𝑒’ 

 

Output: Texture pattern ‘𝑜𝑢𝑡’ 

S-1: Initialize 5×5 window matrix 

S-2: Project window over the enhanced image (𝐼𝑒) 

For (𝑖 = 3 𝑡𝑜 (𝑅𝑜𝑤_𝑠𝑖𝑧𝑒) − 2) 

For(𝑗 = 3 𝑡𝑜 (𝐶𝑜𝑙𝑢𝑚𝑛_𝑠𝑖𝑧𝑒) − 2) 

𝑡𝑒𝑚𝑝 = 𝐼𝑒(𝑖2 + 𝑗2) 

S-3: Compute the median value for the window 

𝑚𝑒𝑑 = 𝑡𝑒𝑚𝑝(3) 

S-4: Check the difference of center of pixel with the 

neighborhood 

if𝑡𝑒𝑚𝑝 (2, 3)>=𝑚𝑒𝑑&&𝑡𝑒𝑚𝑝 (2,4)>= 𝑚𝑒𝑑 

𝐼𝑔𝑐(1)=1; 

elseif𝑡𝑒𝑚𝑝 (2, 3)<𝑚𝑒𝑑&&𝑡𝑒𝑚𝑝(2,4)>=𝑚𝑒𝑑 

𝐼𝑔𝑐(2)=2; 

elseif 𝑡𝑒𝑚𝑝 (2,3)<𝑚𝑒𝑑&&𝑡𝑒𝑚𝑝 (2, 4)<𝑚𝑒𝑑 

𝐼𝑔𝑐(3)=3; 

elseif𝑡𝑒𝑚𝑝(2,3)>=𝑚𝑒𝑑&&𝑡𝑒𝑚𝑝 (2,4)<𝑚𝑒𝑑 

𝐼𝑔𝑐(4)=4; 

Endif 

S-5: Compute the magnitude value from newly formed 

window by using equation (4) 

S-6: Compute the patterns 𝑃𝑡1 = 𝑚𝑎𝑔 × 𝐼𝑔𝑐 

S-7: For(𝑖 = 2 to (𝑅𝑜𝑤_𝑠𝑖𝑧𝑒) − 1) 

For(𝑗 = 2 to (𝐶𝑜𝑙𝑢𝑚𝑛_𝑠𝑖𝑧𝑒) − 1) 

Assign the original image to the temporary variable  

𝑡𝑒𝑚𝑝1 = 𝐼𝑒  (𝑖, 𝑗); 
S-8: Check the condition  

𝑡𝑒𝑚𝑝2(𝑖 − 1, 𝑗 − 1)  = 𝐼𝑒 (𝑖 − 1, 𝑗 − 1) > 𝑡𝑒𝑚𝑝1; 
S-9: Compute the patterns  

𝑃𝑡2 =  𝑡𝑒𝑚𝑝2 

End Loop j 

End Loop i 

S-10: Perform the bitwise OR operation between two patterns 

𝑜𝑢𝑡 = 𝑃𝑡1.∗ 𝑃𝑡2 

 

Active learning 

The process of learning with the special program to take the 

control over the various inputs required for training refers 

active learning. The major objective of such approaches is at 

selective input query against the numerous classifiers. The 

sample selection by using the AL is more discriminative 

compared to random sampling. The presence of region of 

uncertainty among the set of training samples is the core idea 

of the proposed work. The samples available more likely to be 

classified incorrectly in repetitive training stage. The major 

steps in the active learning framework are listed as follows: 

 The annotation of positive and negative samples used for 

training is manually and such process refers passive 

learning 

 The queries from the outputs generated by using the 

passive trained classifiers to get the true and false 

positive manually  

With the above processing steps, the AL reduces the false 

detection rates while maintaining high detection rates. 

http://www.chemijournal.com/


 

~ 1615 ~ 

International Journal of Chemical Studies  http://www.chemijournal.com 

Consider the list of labelled samples be 𝑋 = (𝑥𝑖 , 𝑦𝑖)𝑖=1
𝑙 that 

mapped into the input space 𝜒 of dimension (𝑑). Besides, the 

unlabeled samples are regarded as 𝑈 = (𝑥𝑖)𝑖=𝑙+1
𝑙+𝑢  pool of 

candidates. The repeated feeding in classification model with 

the new labeled pixels improves the performance. The 

algorithmic steps for traditional AL are listed as follows: 

1. Initialize the training sets and pool of candidates, number 

of pixels added to the classification model for each 

iteration 

2. Train the model with the current training set 

3. Compute the user defined heuristic for each candidate in 

candidate pool 

4. According to the score of heuristic, rank is assigned to 

each candidate 

5. Select the most interesting pixels corresponding to the 

rank values 

6. Assign the label to the selected pixels 

7. Add the batch to the training set 

8. Remove that batch from the pool of candidates  

 

The major requirement for the active learning is the 

interaction between the user and model. The provision of 

labelled information with the class-knowledge and the 

interpretation results of the distributed classes is the basic 

need for AL training framework. To complete the execution, 

the relevant pixels are needed which is the crucial task in the 

traditional framework. With the above processing steps, the 

AL reduces the false detection rates while maintaining high 

detection rates. 

The patterns extracted from the EDP are assigned as the input 

values to the AL. The parameters used in AL are illustrated in 

Table I.  

Table I  

AL parameters 

 
S. No Variable Parameter 

1 Α Training Vectors 

2 Β Texture patterns 

3 𝑋 Total number of classes 

4 𝑌 Total number of attributes 

5 𝜃 Angle between the input layer 

6 𝜗 Hidden network layer 

7 μ Input network layer 

8 λ Angle between the hidden layer 

9 𝑅 RMS value 

10 𝑁 Number of RMS value 

11 δ Classifier coefficient 

 

The exponential function for classified output is initialized 

with the following metrics 

 

𝐻 =
(𝑒𝜇−𝑒−𝜇)

(𝑒𝜇+𝑒−𝜇)
      (5) 

 

Where, μ =  𝛽 ∗  𝛸 −  𝜃 

 

The angle between the input layer and the hidden layer are 

related with the following formulation 

 

𝜗 =  𝐻 ∗  𝑌 −  𝜆      (6) 

 

The RMS value necessary to update the classes and attributes 

are estimated by using following formulation 

 

𝑅 =
√(𝛼−ϥ∗^2)

ϥ
      (7) 

Where, ϥ= Exponential form of angle update=
(𝑒𝜗−𝑒−𝜗)

(𝑒𝜗+𝑒−𝜗)
 

 

The update of classes, attributes and the angles between the 

layers are sequentially update through the following 

formulations for all the extracted patterns as follows 
𝛸 =  𝛸 + 𝛿 ∗  (𝛽 (𝑛))’ ∗ (1 + 𝐻) ∗ (1 − 𝐻1)*( ∆ ϥ + 𝑌′) +  𝑋𝜌 (8) 

 

𝜆 =  𝜆 + (− δ ∗ ∆ ϥ) + 𝜆𝜌     (9) 

 

𝜃 =  𝜃 +  − δ ∗ (1 + 𝐻) ∗ (1 − 𝐻1)*( ∆ ϥ + 𝑌′) +  𝜃𝜌 (10) 

 

Y = Y + δ ∗ (𝐻′ ∗ ∆ ϥ ) + Y𝜌 

The update values (𝑋𝜌, 𝜆𝜌, Y𝜌 𝑎𝑛𝑑 𝜃𝜌 ) are formulated as 

follows 
Χ𝜌 = 𝑅 ∗ 𝛿 ∗  (𝛽 (𝑛))’ ∗ (1 + 𝐻) ∗ (1 − 𝐻1)*( ∆ ϥ + 𝑌′) (11) 

𝑌𝜌 =  𝑅 ∗ δ ∗ (𝐻′ ∗ ∆ ϥ )     (12) 

𝜃𝜌 = 𝑅 ∗  − δ ∗ (1 + 𝐻) ∗ (1 − 𝐻1)*( ∆ ϥ + 𝑌′)  (13) 

𝜆𝜌 = 𝑅 ∗ (− δ ∗ ∆ ϥ)     (14) 

 

The distance between the RMS and the count value is 

constructed for previous and the new update values. The 

region of classification for the two feature set corresponding 

to different classes as shown in Fig. 6. From the distance 

values, the minimum value of distance is computed and the 

corresponding label is assigned to the input image.  

 

 
 

Fig 6: Decision Plot for Classification 

 

The results from the AL process train the Relevance Vector 

Machine (RVM) to improve the classification performance. 

The probabilistic sparse kernel that adopts Bayesian approach 

for learning the over fitting samples refers Relevance Vector 

Machine (RVM). The number of predictions from the RVM is 

based on the function described as  

 

𝑦(𝑥) = ∑ 𝜔𝑛𝐾(𝑥, 𝑥𝑛)𝑁
𝑛=1 + 𝜔0    (15) 

 

The function defined in (6) represents the relationship 

between the model weights (𝜔𝑛) and kernel function 𝐾(. , . ) 

in terms of input samples. The non-associated input samples 

with the non-zero weights are close to the decision boundary 

refers “relevance” vectors. The prediction of posterior 

membership for the given class and the optimal solution are 

the objectives of the RVM [31]. The logistic sigmoidal function 

generalizes the linear model and the corresponding likelihood 

is computed for the class instances (𝑐) as  

 

𝑃(𝑐/𝑤) = ∏ 𝜎{(𝑦(𝑥𝑖)}𝑐𝑖[1 − 𝜎{(𝑦(𝑥𝑖)}]1−𝑐𝑖𝑛
𝑖=1   (16) 
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Where, 𝜎(𝑦) is the logistic sigmoid function 

 

𝜎(𝑦(𝑥)) =
1

1+exp (−𝑦(𝑥))
    (17) 

 

The most probable weights computation, iterative reweighted 

least square algorithm utilization and Gaussian approximation 

are repeated until the convergence criteria is satisfied.  

 

Performance analysis 

This section illustrates the performance analysis of the 

proposed EDP-AL regarding the sensitivity, specificity, 

accuracy, precision, and recall. Besides the comparative 

analysis of proposed EDP-AL with the existing SVM [32] and 

Class Level Joint Sparse Representation Classifier (CL-JSRC) 
[14] and Probabilistic weighed strategy [21] in hyper spectral 

image analysis. 

 

Dataset 

There are two data sets such as Pavia University and Indian 

Pines hyperspectral data sets are used to validate the 

performance of proposed EDP-AL. The Pavia University data 

set was collected by the Refl ective Optics Spectrographic 

Imaging System (ROSIS) sensor, which has 610 × 340 pixels 

and 103 spectral bands ranging from 0.43 to 0.86 μm. The 

spatial resolution is 1.3 m. The Indian Pines data set is 

acquired by the AVIRIS sensor. The data set has 145 × 145 

pixels, with 220 spectral bands ranging from 0.4 to 2.5 μm 

and the spatial resolution of 20 m. the information classes and 

the labelled samples for Pavian university and Indian Pines 

are listed in Table II and Table III.  

 
Table 2: Information classes and number of labeled samples (Pavia 

University) 
 

Class Train Test 

Asphalt 310 6206 

Meadows 806 16123 

Gravel 94 1880 

Trees 146 2933 

Metal 67 1345 

Bare Soil 251 5029 

Bitumen 66 1330 

Bricks 184 3682 

Shadow 47 947 

Total 1971 39475 

 
Table 3: Information classes and number of labeled samples (Indian Pines) 

 

Class Train Test 

Alfalfa 27 54 

Corn-notill 50 1434 

Corn-Min 50 834 

Corn 50 234 

Grass/Pasture 50 497 

Grass/Trees 50 747 

Grass-mowed 13 26 

Hay-windrowed 50 489 

Oats 10 20 

Soybeans-notill 50 968 

Soybeans-Min 50 2468 

Soybeans-clean 50 614 

Wheat 50 212 

Woods 50 1294 

Bldg-grass-drives 50 380 

Stone-steel-towers 50 95 

Total 700 10366 

 

Performance metrics 

The performance validation of the proposed EDP-AL on the 

basic parameters and the comparative analysis of the existing 

SVM [32] and the EDP-AL assures the effectiveness of the 

extended differential pattern-based classification. Table II 

presents the comparison of performance metrics for proposed 

EDP-AL and the existing method of SVM. The comparative 

analysis between SVM and EDP-AL shows that the 

sensitivity, specificity, accuracy, precision and recall values 

of proposed EDP-AL are 8.96, 0.6, 8.97, 9.07 and 8.97 % 

respectively.  

 
Table 4: Performance Analysis 

 

Parameters SVM EDP-AL 

TP 2214 2432 

TN 34777 34998 

FP 256 35 

FN 253 35 

Sensitivity (%) 89.7446 98.5813 

Specificity (%) 99.2693 99.9001 

Precision (%) 89.6356 98.5813 

Recall (%) 89.7446 98.5813 

Jaccard Coeff 98.6427 99.8133 

Dice Overlap 99.3167 99.9066 

Kappa Coeff. 0.883 0.984 

Accuracy (%) 89.76 98.6 
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Classification accuracy and kappa coefficient analysis 

The comparative analysis between the proposed PCAL with 

the existing methods of SVM-DMP [14], SRC-DMP [14] JSRC-

DMP [14], Raw [21], MNF [21] and VS-SVM [21] regarding the 

classification accuracy and Kappa coefficient as shown in 

Table V and VI illustrate the variations of both classification 

accuracy (for each class of the dataset) and Kappa coefficient.  

In existing methods, the JSRC-DMP and VS-SVM provided 

better results in classification accuracy and kappa coefficient 

for each class of image. 

 
Table 5: Accuracy and Kappa Coefficient Analysis (Indian Pines) 

 

Class SVM-DMP [14] SRC-DMP [14] JSRC-DMP [14] RAW [21] MNF [21] VS-SVM [21] EDP-AL 

1 82.75 83.14 85.1 82.93 68.85 100 97.92 

2 83.48 87.85 90.92 60.66 73.99 94.26 97.8 

3 87.83 89.18 86.74 41.07 53.99 91.39 99.96 

4 91.35 88.92 87.34 31.82 55.76 82.65 99.96 

5 92.22 93.41 91.36 59.13 80.39 96.77 100 

6 96.11 94.36 92.98 88.29 96.3 99.59 100 

7 92.5 97.08 81.67 96.3 100 100 100 

8 97.16 97.13 95.54 97.1 99.35 100 99.96 

9 51.58 56.32 48.95 63.64 100 100 100 

10 71.64 83.48 86.83 61.32 61.83 88.54 100 

11 90.22 90.51 96.17 78.29 83.24 97.42 100 

12 73.46 78.78 79.78 45.29 56.86 97.93 100 

13 97.61 97.91 98.61 88.44 97.14 99.66 100 

14 97.99 98.19 98.9 89.99 93.34 100 100 

15 94.93 96.45 88.53 56.28 70.36 94.88 100 

16 78.11 79.56 74.67 98.89 95.7 97.84 100 

Kappa Coeff 86.65 89.21 90.71 62.5 72.92 95.16 96.42 

 
Table 6: Accuracy and Kappa Coefficient Analysis (Pavia University) 

 

Class SVM-DMP [14] SRC-DMP [14] JSRC-DMP [14] RAW [21] MNF [21] VS-SVM [21] EDP-AL 

1 93.77 84.41 87.95 81.99 84.86 92.12 99.68 

2 97.35 97.09 97.89 94.22 84.5 99.56 98.4 

3 65.04 56.76 61.9 68.11 74.32 85.65 98.72 

4 93.7 90.64 93.75 79.92 75.06 98.24 97.97 

5 72.91 83.9 89.9 97.94 99.55 99.7 97.49 

6 81.84 64.12 71.66 65.43 78.58 94.43 97.01 

7 65.28 75.05 77.43 67.85 82.72 90.45 96.53 

8 89.35 72.21 79.21 67.79 78.9 92.34 96.05 

9 69.03 84.02 89.21 100 100 100 95.57 

Kappa Coeff 86.7 80.28 84.65 76.76 77.89 94.72 95.87 

 

But, the differential pattern in proposed work extract the 

relevant patterns from the diverse patterns that improve the 

classification accuracy and coefficient value further.  

 

Acceptance /rejection rate analysis 

The number of incorrect labeling for each unauthorized user 

attempt and the rejection are defined by two metrics called 

False Acceptance Rate (FAR) and False Rejection Rate 

(FRR). The mathematical formulations of FAR, FRR, and 

GAR for facial expression recognition is listed as follows: 
𝐹𝐴𝑅 = (𝐹𝑎𝑙𝑠𝑒 𝑐𝑙𝑎𝑖𝑚𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒)/(𝑇𝑜𝑡𝑎𝑙 𝑐𝑙𝑎𝑖𝑚𝑠) × 100  (15) 

𝐹𝑅𝑅 = (𝐹𝑎𝑙𝑠𝑒 𝑐𝑙𝑎𝑖𝑚𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛)/(𝑇𝑜𝑡𝑎𝑙 𝑐𝑙𝑎𝑖𝑚𝑠) × 100  (16) 

𝐺𝐴𝑅 = 100 − 𝐹𝐴𝑅  (17) 

 

Table VII shows the variations of FAR, FRR and GAR for 

proposed EDP-AL on various classes. 

 
Table 7: Acceptance/Rejection Rate Analysis (Indian Pines) 

 

Class FRR FAR GAR 

1 0.48 0.92 99.52 

2 0 0.48 100 

3 0.04 0 99.96 

4 0 0 100 

5 0 0 100 

6 0 0 100 

7 0 0 100 

8 0.04 0 99.96 

9 0 0 100 

10 0 0 100 

11 0.84 0 99.16 

12 0 0 100 

13 0 0 100 

14 0 0 100 

15 0 0 100 

16 0 0 100 
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From the Table VI, it is observed that the proposed EDP-AL 

offers the improved GAR with minimum FAR and FRR rates 

due to the extended texture features. 

 

Accuracy analysis with existing AL approaches 

The analysis of Average Accuracy (𝐴𝐴) with the proposed 

EDP-AL and existing methods of CASSL [26], MCLU-ECBD 

[27], LLE-mCR [28] and CASSL-NoPLV [26] respectively. 

Besides, the comparative analysis of Overall Accuracy (OA), 

AA and Kappa coefficient for proposed EDP-AL with the 

existing GP-based AL versions [29] also suggest the 

effectiveness of proposed EDP-AL in remote sensing 

applications.  

 

 
(a) 

 
(b) 

 

Fig 7: (a) Average Accuracy Analysis for Pavia University labelled Samples (400 and 800) and (b) Overall and Average Accuracy analysis for 

Indian Pines 

 

The mathematical formulation of Kappa coefficient (in terms 

of %) is described as follows: 

 

𝐾𝑎𝑝𝑝𝑎 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (%) =
𝑂𝐴 − 𝐴𝐴

100 − 𝐴
 

 

Fig. 7 shows the variations of OA, AA and Kappa statistics 

for proposed and existing AL methods on the PU and IP. The 

AA of proposed EDP-AL is 93.2545 % which is better than 

the existing methods. Similarly, the OA, AA and Kappa 

statistics for EDP-AL are 95.71, 57.83 and 89.82 % which are 

better than the existing GP-based AL methods. 

 

Conclusion and future work 

This paper addressed the limitations in HSI classification and 

provided the solutions to them through the combination of 

texture-pattern and active learning framework. The major 

limitations in the HSI classification are spectrum variations, 

more number of rules and the multi-label segmentation 

problems. This paper proposed the novel methods to improve 

the classification performance against the various factors. 

Initially, the DIF removed the noise present in the image and 

the application of Histogram Equalization (HE) enhanced the 

image quality. The merging and classification of different 

labels for each image sample is performed through the EDP 

provided the textural information clearly. With these pattern 

set, the traditional active learning methods such as RVM and 

the multi-class SVM classified the HSI patterns that play the 

major role in remote sensing applications. The comparative 

analysis between the proposed EDP-AL with the existing 

algorithms regarding the various parameters conveyed the 

effectiveness of EDP-AL in remote sensing applications. The 

merging of textural patterns with the clear edge matching 

among the various bands through extended EDP will be 
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considered as the future work to improve the classification 

performance. 
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