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review 
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Abstract 

The developing countries like India are facing serious consequences of nutritional inadequacy for the 

ever-increasing population masses. Consumption of large scale cereal-based foods with small 

concentrations and low bioavailability of Zn is the major reason behind this problem. Low grain Zn 

concentrations is highly related with the Zn deficient soils (accounting to more than 40-50% of Indian 

soils) where they are grown. The common strategies for sustaining Zn bioavailabilty include food 

fortification, dietary diversification, and medical supplementation. Several limitations have emerged 

regarding nutritional diversification and food enrichment, which has favored Zn biofortification as a 

perpetual solution of malnutrition. The agronomic and genetic biofortification processes emerge as the 

fore-runner in this scenario. The current review thereby focuses on the role of Zn in plants and human 

health, chalks out the uptake and translocation of Zn in cereal grains, and more specifically tries to pave 

out the paths for nutritional security driven by various agronomic, breeding and biotechnological 

approaches. The review enunciates that the adoption of amenable strategy combined with better 

cultivation practices can be the only future pathway for human welfare. 
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Introduction 

Post green revolution period has been enunciated as a story of agricultural development 

(Dhaliwal et al., 2015; Rada, 2016) [42, 143] through the transformation of subsistence to 

sustainable farming and deficiency in food grain production to its sufficiency (Sengupta and 

Dey, 2019) [167]. To augment the production hitherto, there has been a continuous increase in 

fertilizer use and consumption in India (Jaga and Patel, 2012) [86] while on the other hand this 

indiscriminate application culminated into several nutrient deficiencies occurring in soil 

(Singh, 2008). The mining of nutrients from the soil on continuous basis has robbed off the 

inherent soil fertility status (Majumdar et al., 2016) [107] coupled with inadequate and 

imbalanced use of fertilizers caused increasing deficiencies of secondary and micronutrients 

which are limiting crop response to use of primary nutrients N, P and K (Goud et al., 2013) [59]. 

The deficiencies of B, Fe, Mn, S and Zn in soil are now cropping up on a wide scale in the 

country (NAAS, 2018) [120].  

The deficiency of Zinc (Zn) has global connotation owing to its necessity in human dietary 

system (Singh and Prasad, 2014) [175]. The deficiency Myers through the dietary dilemma may 

profoundly influence one third of the world’s population (et al., 2014; Saha et al., 2017; 

Bhattacharya, Sengupta and Halder, 2019) [159, 168]. The prevalence is more in children under 5 

years of age because of large demand for Zn to support growth and development (Wessells & 

Brown, Krebs 2012) [215] and results in mortality of about half a million annually (Black et al., 

2008; et al., 2014; Cakmak and Kutman, 2018) [17, 29]. Deficiencies Zinc has diverse 

biochemical and physiological functions in biological systems especially regarding critical 

structural, functional and regulatory roles including enzyme activation, protein synthesis, 

starch, auxin and nucleic acid metabolism and pollen development (Cakmak, 2000; Chang et 

al., 2005) [26, 32]. The deficiency of Zn in human system is associated with serious health 

complications like defective immune system, physical growth, learning capabilities, risk of 

infections, damage to DNA and cancer (Gibson 2006; Zaman et al., 2018) [54, 230].  
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A close inspection suggests that Zn deficiency in human 

beings are predominant in areas where there is deficiency in 

soils as the availability through the major dietary pathways 

are curtailed (Singh and Prasad, 2014) [175]. In the Indian 

context, the consumption of cereal grains especially rice 

deserves special mention. Rice (Oryza sativa L.) is one of the 

major staple foods, contributing to half of the world 

population’s dietary intake (Sunusi et al., 2019) [190]. It is 

grown in more than 100 countries, predominantly in Asia and 

contributes to about 21% of the global energy and 15% 

protein requirements (Maclean et al., 2002; Depar et al., 

2011) [106, 41]. Rice productivity is often severely jeopardised 

by several abiotic hindrances. Zinc deficiency is one of the 

prime abiotic factors limiting the rice productivity and 

associated human availability (Rehman et al., 2012) [151]. This 

assumes greater significance since the major obstacle to 

improve tolerance to zinc deficiency in rice is not fully 

understood and a wide range of soil conditions affect its 

availability (Wissuwa et al., 2006) [219]. 

The common approaches to alleviate human micronutrient 

deficiency involves food fortification, dietary diversification 

and medical supplementation (Bouis et al., 2011) [21] which is 

difficult to adopt for poor rural residents of the developing 

countries (Zhang et al., 2018) [232]. Biofortification, which 

intends to increase the micronutrient content in plant edibles 

is thereby attracting and ever increasing attention (Wani et al., 

2015; Chattha et al., 2017) [209, 33]. Genetic and agronomic 

biofortification are two important agricultural approaches that 

could be helpful in improving cereal grains to optimum Zn 

concentrations (Das et al, 2019) [37, 39]. 

With this background, in this review, we have made a modest 

attempt to discuss the functions of Zn in rice, Zn dynamics in 

the soil to unearth the Zn deficiency in soils which in turn 

affect its bioavailability. Furthermore, we have discussed 

agronomic management and breeding options to improve Zn 

intake and partitioning into rice grains for the improvement in 

yield and quality and ultimately help to ensure food and 

health safety. 

 

Role of Zn in plant growth and nutrition 

The imperative micronutrient zinc has several vital functions 

to play in the plant systems (Das and Green, 2016) [38]. Acting 

as a cofactor, Zn activates different hormones e.g. auxin 

required for growth and development of plants (Begum et al. 

2016) [12]. Moreover, numerous biochemical processes, such 

as nucleotides production, auxin metabolism, enzyme 

activation, chlorophyll formation, pollen fertilization are all 

contributed by tissue Zn content (Zaman et al., 2018) [230]. 

Apart from these, membrane function, photosynthesis, gene 

expression, protection against drought and pathogens are also 

influenced by the Zn content (Hefferon, 2019) [74]. Zinc is 

usually absorbed as Zn2+ ion, and is involved with all six 

enzyme classes (oxidoreductases, transferases, hydrolases, 

lyases, isomerases and ligases) especially acting as a 

constituent of carbonic anhydrase, alcoholic dehydrogenase 

and superoxide dismutase (Romheld and Marschner, 1991; 

Rattan, 2017) [56, 149]. 

 

Role of Zn in human health and physiology 

Zn deficiency is ranked as the 5th leading risk factor for 

diseases (e.g. diarrhoea and pneumonia in children) in the 

developing countries (WHO, 2002). Zinc plays a significant 

role in diverse physiological functions in biological systems 

by interacting with a large number of enzymes and proteins in 

the body and performing critical roles in structural, functional 

and regulatory systems (Cakmak and Kutman, 2018) [29]. Its 

role in the structural and functional integrity of biological 

membranes and detoxification of highly aggressive free 

radicals is immense (Cakmak, 2000) [26]. It acts as an effective 

antioxidant and anti-inflammatory agent (Rattan, 2017) [149]. 

The deficiency of Zn is attributed to any alteration in Zn 

homeostasis or decrease in Zn concentration of human body 

may result in wide range of health problems such as growth 

retardation, loss of appetite, impaired immune function, hair 

loss, diarrhoea, eye and skin lesions, weight loss, delayed 

healing of wounds, and mental lethargy (Hotz and Brown 

2004; Prasad 2004; Wang and Busbey 2005; Swamy et al., 

2016) [76, 175, 206, 195].  

The dietary allowable limits of Zn for infants is 3–5 mg/day, 

for children of 1–10 years it is 10 mg/day for adults, 15 

mg/day for men and 12 mg/ day for women and 16–19 

mg/day for lactating women (WHO, 1996) [216]. The murky 

picture however is that these intake limits are hardly met 

(Singh and Prasad, 2014) [175]. Over 25% of the total 

population in India is at the risk of inadequate Zn intake (Ray 

et al., 2016) [150] and the current burden of Zn deficiency 

related anomaly amounts to 2.8 million disability-adjusted life 

years (DALYs) lost, 2.7 million from mortality and 1,40,000 

from morbidity, 70% of which occur among infants (Stein, 

2014) [186]. 

 

The dynamics of Zn in soil 

The total zinc concentration of the lithosphere is 

approximately 80 mg kg-1 (Brennan, 2005) [22] and in soil it 

ranges approximately from 7 to 1000 ppm (Havlin et al., 

2005) [73]. In agricultural soil, it varies from 4.65 to 427.8 mg 

kg-1 with an average of 117.35 mg kg-1 (Su et al., 2014) [188]. 

Available (DTPA extractable) Zn ranged between 0.12 and 

2.80 mg/kg soil (Katyal and Sharma, 1991) [95]. Unbound Zn 

occurs in soil as Zn2+ because of having a typical complete 

3d104s2 outer electronic configuration contributing to a fixed 

oxidation state of +2 (Barker & Pilbeam, 2015) [11]. 

There are five major pools of zinc in the soil: (a) zinc in soil 

solution; (b) surface adsorbed and exchangeable zinc; (c) zinc 

associated with organic matter; (d) zinc associated with 

oxides and carbonates; and (e) zinc in primary minerals and 

secondary alumino-silicate materials (Shuman, 1991; Moreira 

et al., 2006; Moreira et al., 2016) [174, 117, 188].  

Zinc present in soil solution represents only a small fraction 

of the total metal content in soil (Shukla & Anshumali, 2018) 

[173]. It is regulated by a number of factors such as moisture, 

soil reactions, temperature, redox potential (Eh), fertilizer 

additions, and plant uptake (Sun and Zhang, 2017) [189]. Zn 

containing minerals like franklinite (ZnFe2O4) also affects the 

zinc concentration in soil solution via equilibrium solubility 

(Wisawapipat et al., 2017) [217]. Surface adsorbed and 

exchangeable fraction together with the soil solution zinc 

generally accounts for less than 2% of the total zinc present in 

soil (Emmerson et al., 2000) [43]. It involves weakly adsorbed 

metals attached to the solid surface by relatively weak 

electrostatic interaction. Remobilisation of metals can occur 

in this fraction due to adsorption desorption reactions and 

lowering of pH (Ahnstrom & Parker 1999; Narwal et al., 

1999) [3, 124]. The exchangeable fractions include weak acid 

soluble carbonates and exchangeable pools of micronutrients 

(Adamo et al., 2018) [2]. Exchangeable and adsorbed ions i.e 

weakly adsorbed (on nonspecific sites) and strongly held ions 

(on specific sites) respectively are grouped as one pool and 

are extracted together inspite of having separate impact on the 

zinc chemistry of soil (Shukla & Anshumali, 2018) [173]. 

http://www.chemijournal.com/
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Zinc may be associated with soil organic matter, which 

includes water-soluble and organic compounds. Zinc is bound 

via incorporation into organic molecules, exchange, chelation, 

or by specific and nonspecific adsorption (Shuman, 1991; 

Moreira et al., 2006) [174, 117]. Under oxidizing conditions, 

decompostion of organic matter results into release of zinc 

bound to this component. The organic fraction released 

through this reaction is not considered to be bioavailable as 

those are associated with stable high molecular weight humic 

substances that slowly releases zinc (Filgueiras et al., 2002) 
[47].  

Zinc is associated with hydrous oxides and carbonates via 
adsorption, ion exchange, surface complex formations, 
incorporation into the crystal lattice and co-precipitation. 
Some of these reactions fix zinc rather strongly and are 
believed to be instrumental in controlling the amount of zinc 
in the soil solution. In heavy metal contaminated acid soils of 
the southeastern United States, high rates of soil-applied zinc 
may be responsible for the elusive mouse-ear symptom 
(Itanna & Coulman 2003) [85] possibly due to competition 
with nickel ions (Grill et al., 1985) [64].  
A majority of the micronutrient metals are found in the crystal 
structures of the highly resistant primary and secondary 
minerals which comprise the residual fraction after all other 
extractants have been employed. These forms usually are less 
resistant to extraction. These exist predominantly in two 
forms (a) sulfides for Zn, Cu, and Fe; and (b) carbonates for 
Zn, Cu, Mn and Fe (Krauskopf, 1972; Sposito, 1983) [98, 184]. 
Franklinite (ZnFe2O4), smithsonite (ZnCO3), Sphalerite (ZnS) 
and Willemite (Zn2SiO4) are common minerals which contain 
Zn (Havlin et al., 2005) [73]. In non-contaminated areas, soil 
zinc is predominantly concentrated in crystalline primary and 
secondary minerals (Minkina et al., 2015) [116]. 

Waterlogging may initiate a suite of reactions that affect Zn 

mobility in contrasting ways. Under acidic soil condition, 

submergence leads to neutrality in the pH value which 

ultimately contributes to Zn sorption on organic matter 

possibly due to reduction in the concentration of major 

competing H+ ions. In contrast, reductive dissolution of iron 

oxides and hydroxide can mobilize metals absorbed on or 

embedded in iron oxides (Chuan et al., 1996) [36]. For Fe, 

crystalline minerals such as Fe3O4 (magnetite) or FeCO3 

(siderite) can be formed via conversion of an amorphous iron 

mineral to a crystalline mineral if the maximum Fe solubility 

is exceeded. The formation of these new minerals leads to 

reduction in the bio availability possibly due to re-absorption 

of zinc as substituting ion or an inherent component such as 

franklinite-like solids (ZnFe2O4) (Renault et al., 2009; Weber 

et al., 2009) [154, 211].  

 

Magnitude of Zn deficiency in Indian soils 

The phenomenon of zinc deficiency is spread over a wide 

range of countries throughout the world (Naik and Das, 2008; 

Sadeghzadeh, 2013) [122, 158] and reported long back, 

especially India (Nene, 1966) [126], Japan (Yoshida and 

Tanaka, 1969) [227], Philippines (Yoshida et al., 1973) [228], 

Pakistan (Yoshida and Tanaka, 1969) [227], Taiwan (Yoshida 

et al., 1973) [228], USA and Brazil (Deb, 1992) [40]. The 

tropical regions are more prone to such deficiency especially 

for highly weathered soils, semi arid calcareous soils, sandy 

and acid soils (Rattan, 2017) [149]. 40-50% of the Indian soils 

on an average are responsive to Zn application (Rattan, 2015) 
[147]. An interesting observation was evident from the study of 

Katyal and Rattan (1993) [94] that the average Indian soils 

contain 0.57 mg/kg of Zn in the bioavailable form, which is 

only 1/100th of the total Zn content. Such lower mea estimates 

were observed for all soils (Katyal and Sharma, 1991) [95] as 

evident from DTPA extractable Zn content (mg/kg) of 

Ultisols (0.28), Aridisols (0.38), Alfisols (0.55), Oxisols 

(0.86), Vertisols (0.41), Entisols (0.44) and Inceptisols (0.66). 

On that basis, coarse-textured, calcareous or alkaline low in 

organic matter alluvial soils (Entisols and Inceptisols) of 

Indo-Gangetic plains of North India; fine textured calcareous 

black soils (Vertisols) of Deccan Plateau; and highly leached 

rice-growing red and other associated soils (Alfisols, Oxisols 

and Ultisols) are major Zn deficient soils in India (Rattan et 

al., 2008) [148]. The deficiency of Zn is predominant mostly in 

cereal grown areas; covering nearly 50% of the cereal-grown 

areas in the world (Graham and Welch, 1996; Cakmak, 2002) 
[60, 25] and in India as well (Ray et al., 2016) [150]. Thus to 

augment dietary Zn availability manipulation of soil status 

and plant uptake mechanisms are important. 

 

Uptake mechanism of Zn in rice plant 

To manipulate the Zn availability in rice, better understanding 

of the physiological basis of Zn uptake, its translocation, the 

maintenance of Zn homeostasis, Zn partitioning within and 

between different plant parts and within rice grain, internal 

allocation, re-allocation, re-mobilization, and efficient loading 

into grain is essential (Stomph et al., 2011; Olsen and 

Palmgren, 2014) [187, 128]. The loading of Zn in the rice grain is 

mainly based on three different hindrances: 1) soil-to-root 

barriers; 2) root-to-shoot barriers; and 3) barriers in loading 

Zn into grains. 
Root uptake, the first step towards the accumulation of Zn in 
rice grains is influenced by root architecture, root hairs, crown 
root development, root surface area, root anatomical 
structures and modification of rhizosphere chemistry that 
involves exudation of protons, which can change soil pH, 
thereby improving the solubility of Zn in the soil and facilitate 
its diffusion to the root surface (Rose et al. 2013; Swamy et 
al., 2016) [157, 195]. Although only negligible amount of Zn 
cross the root and succeed to reach the xylem using an 
apoplastic pathway, it is mostly the symplastic pathway is 
responsible for transportation of Zn across the roots to the 
xylem (Broadley et al. 2007) [24]. The main source of Zn in 
rice grains occurs by direct root uptake, remobilizations from 
vegetative tissues or combination of both of these two 
approaches are the main source of Zn in grains (Impa et al. 
2013) [79]. Usually, Zn can be obtained in the form of Zn 
phytosiderophore complex or as Zn2+ ions (Broadley et al. 
2007) [24]. Some Ca2+ channels in the plasma membrane and 
predominantly ZIPs (ZIP1, ZIP3, and ZIP4) (Palmgren et al., 
2008) [132] mediate Zn2+ uptake, while yellow stripe-like 
(YSL) proteins helping the uptake of Zn–phytosiderophore 
complexes in gramineae family (Suzuki et al. 2006) [192]. 
Guerinot (2000) [66] opined about the role of ZRT/IRT-like 
proteins and ZIP like transporters (AtZIP1, AtZIP2, AtZIP3 
and AtZIP4) for Zn uptake into the roots. 
A continuous xylem flow from root to grain enabled by 
transpiration pull can directly transport Zn to grains (Krishnan 
and Dayanandan 2003) [100]; however the barriers in root-
shoot transfer and the internal allocation and re allocation of 
Zn within and between vegetative and reproductive tissues 
(Swamy et al. 2016) [195], can hinder Zn uptake and its load in 
grain (Jiang et al. 2008) [79]. The major root-to-shoot barriers 
include suberin constituent of the cell wall, casparian strips, 
Zn sequestration in cytoplasm and vacuoles, as well as 
anatomical variations that exists in the root-shoot junction 
(Yamaguchi et al. 2012; Yamaji et al. 2013) [222, 223]. From the 
roots, Zn is transported to above ground parts of the plant 
through xylem as well as in phloem, mostly chelated by 
nicotianamine (NA) (Von Wirén et al. 1999) [205]. 

http://www.chemijournal.com/
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Fig 1: Zn uptake and transport in the root grain (Nakandalage et al. 2016; Zaman et al., 2018) [123, 230]. 

 

Although the cytoplasm of a plant cell comprises of several 

Zn2+ holding proteins, but overall Zn2+ concentration is very 

small (Broadley et al. 2007) [24]. Zn transport in the xylem 

may occur as Zn2+ or as a complex with organic acids, 

nicotianamine or histidine and collected in the vacuole as an 

organic acid complex (Leitenmaier & Küpper 2013) [102]. The 

Zn2+ influx to the leaf portion of the plant through the phloem 

by either ZIP family (Ishimaru et al. 2005) [84] or YSL 

proteins (Zaman et al., 2018) [230]. From the vacuolar pool, 

NRAMP protein transporters enable remobilization (Thomine 

et al. 2003) [196]. However, the increased expression of 

OsNAS3, OsNAAT1, and OsDMAS1 genes in rice shoot can 

severely curtail Zn uptakes (Suzuki et al. 2008; Ishimaru et 

al., 2011) [193, 82]. Nakandalage et al. (2016) [123] presented 

mass flow of Zn intake and transport for loading into the rice 

grain. The selective phloem transport of Zn from old to new 

tissues and grain lower the Zn content in reproductive tissues 

(Wu et al., 2010; Impa et al., 2013) [221, 79]. Even the flag leaf, 

which plays an important role in photosynthesis and grain 

yield, was found to have a little contribution to grain Zn 

(Sperotto et al. 2013) [183]. Even higher Zn uptake through 

roots and shoots were not found to significantly contribute to 

grain through internal translocation emerging as the major 

bottleneck in this research (Stomph et al. 2014; Yin et al. 

2016) [226] and emerged as the major basis to over express 

genes such as OsZIP1, OsZIP4, OsZIP8, OsZIP8a, OsYSL8, 

OsYSL9, OsFRO2A, OsNAS1, OsNAS2, OsNAS3, OsArd2, 

OsIRT1, OsNRAMP1 and OsHMA2 for augmenting Zn uptake 

by transgenic approaches (Ishimaru et al. 2005, 2007, 2011; 

Chandel et al. 2010; Sasaki et al. 2014) [84, 83, 82, 30, 31]. 

 

Expression of Zn deficiency in plants (rice) 

Zn is considered to be intermediate or conditionally mobile by 

several researchers and because of that its deficiency 

symptom is first seen in the younger leaves (Marschner, 1995; 

Epstein and Bloom, 2005) [109, 44]. Acute Zn deficiency is 

manifested through stunted growth, shortened internodes and 

petioles and 'little leaf' (small malformed leaves) which was 

reported to be the classic 'rosette' symptom in new tender 

growth of dicotyledons (Snowball and Robson, 1983; 1986) 

[179, 180] and 'fan shaped stem' in monocotyledons (Grundon, 

1987) [65]. 

These leaves remain small, cup upwards and develop 

interveinal chlorosis with veins remaining green in mild to 

moderate deficient conditions and on the upper leaf surfaces 

necrotic spots appear which later forms brown necrotic and 

brittle patches (Brennan et al., 1993; Shukla et al., 2016) [23, 

172]. Zinc deficiency in rice termed as “khaira” disease was 

first reported by Nene (1966) [126]. Symptoms appear both in 

nursery and in main field 2-4 weeks after transplanting. 

Symptoms include dusty brown spots on upper leaves of 

stunted plants, uneven plant growth, poor seedling 

establishments, chlorotic midribs and ultimately spikelet 

sterility in rice (Nene, 1966; Prasad & Shivay, 2018) [126, 140, 

171].  

 

Biofortification: a tool to combat Zn malnutrition 

To avail Zn to the human community and curtail malnutrition, 

augmenting Zn load in food edibles especially rice grain, has 

become a serious necessity. Biofortification is the most 

acclaimed method to effectuate this (Zhang et al., 2018) [232]. 

It may be defined as an agricultural strategy aimed to increase 

the content of micronutrients in edible parts of major staple 

food crop for better human uptake (Hotz, 2009; Cakmak and 

Kutman, 2018) [77, 29] in a more practical, sustainable, and 

cost-effective approach and combat malnutrition problems 

(Hess and Brown, 2009; Bhullar and Gruissem, 2013; Wang 

et al., 2016) [75, 16, 208]. Production of nutritious and safe foods, 

sufficiently and sustainably, is considered the ultimate goal of 

biofortification (Saltzman et al, 2013) [161]. Biofortification or 

biological fortification of cereals for zinc ideally aims at 

increasing the Zn content in grains by 40-60 mg/kg, although 

for rice a value is not obtained (Rattan, 2017) [149]. A fixed 

target concentration of 28 m/kg has been envisaged for rice 

(Harvest Plus, 2014) [71]. Apart from improving human health, 

it can also impart tolerance to abiotic stress, provide higher 

yield and even improve resistance to insects, pests and 

diseases (Cakmak, 2008) [28]. The process of biofortification 

can be achieved through modern bio-technology techniques, 

conventional plant breeding, and agronomic practices (Garg et 

http://www.chemijournal.com/
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al., 2018) [53]. While agronomic biofortification is usually 

done through soil application of efficient Zn sources at the 

right rate, time, and stage (Saha et al., 2017; Zaman et al., 

2018) [159, 230] and improving soil phytoavailability, the 

process of genetic biofortification involves development of 

new crop cultivars with relatively higher accumulating ability 

for essential nutrients such as Zn in grains (Zhao and 

McGrath, 2011; Velu et al., 2012; Palanisamy, 2018) [237, 204, 

131]. Such processes of biofortification have been elucidated 

here. 

 

 
 

Fig 2: Approaches of zinc biofortification (Nakandalage et al. 2016; Zaman et al., 2018) [123, 230]. 

 

Agronomic Biofortification of zinc in rice 

Among the different approaches that are involved in 

improving the zinc availability in the grain the easiest one is 

the agronomic biofortification.This agronomic processes 

involve strategies, such as fertilizer soil application, foliar 

applications, and seed dipping which are practically and 

effectively employed to increase the tissue micronutrient 

content of rice and other crops in a short period of time 

(Cakmak et al., 2010; Yuan et al., 2013; Wang et al., 2016) 
[26, 229, 208]; however, the repeated applications involves higher 

costs of labor and extra relevant expense, thus is a 

comparatively expensive measure (Velu et al., 2014; Zhang et 

al., 2018) [201, 203, 232]. The most common method of 

application is root-applied Zn (Jiang et al., 2007) [89], although 

foliar application is much more efficient (Yilmaz et al. 1997; 

Cakmak et al., 2010; Zou et al., 2012; Jan et al. 2016) [225, 26, 

239, 87]. This can also be explained more categorically as (i) soil 

applied zinc, which is absorbed by roots followed by xylem 

pathways in the storage tissues and finally the grains by 

phloem (Pottier et al., 2014; Cakmak and Kutman, 2018) [29] 

winning over the impediments of high pH of phloem sap and 

chelation tendency (Impa and Johnson-Beebout, 2012) [80] and 

(ii) foliar applied easily translocated Zn in the plants based on 

plant nutritional status, germplasm and phenological stage 

(Waters et al., 2009; Kutman et al., 2012; Sperotto, 2013; 

Saha et al., 2017) [210, 101, 183, 159]. 

 

Soil Zn application 

The most widely employed method of Zn application is its 

soil based application which can be executed through 

broadcasting, band placement, or fertigation (Zaman et al., 

2018) [230]. However, the efficiency of Zn fertilizers applied 

varies considerably for waterlogged and aerobic rice system 

(Velu et al., 2014) [201, 203]. The timing of application is also 

vital (Rehman, 2012) [151]. It was interesting to note that a shift 

in rice cultivation from flooded to dry sowing aggravated the 

Zn deficiency problem as the involvement of a large number 

of factors come into foreground like N transformations, root 

growth, mycorrhizal inoculation, metabolites and root 

exudates, and soil factors viz., pH, anions and redox 

conditions (Gao et al., 2006; 2012) [51, 50]. The fertilizers with 

higher solubility (e.g. Zn- EDTA and ZnSO4) usually 

transport greater Zn to the roots compared with insoluble ZnO 

or fritted Zn; however research from Harvest Zinc project 

(www.harvestzinc.org), reported very little effect of soil Zn 

applications at the time of sowing on the concentration of Zn 

in the grain under field conditions (Cakmak and Kutman, 

2018) [29]. Even research carried out in India suggests that soil 

application had increased grain yield but could not contribute 

significantly to grain Zn load irrespective of type of fertilizer 

applied (Naik and Das, 2008; Ram et al., 2015; Rattan, 2017) 
[122, 145, 149]. 

 

Seed treatment of Zn fertilization 

Zn seed treatments were initiated in the early 1970s but to 

limited success (Giordano and Mortvedt, 1973; Mengel et al., 

1976; Haghighat and Thompson, 1982) [56, 114, 67]. Applying Zn 

in the seed as a starter-fertilizer can effectuate good crop 

yield, but cannot increase the Zn load; thus application of 

seed based Zn fertilizer at sowing as well as specific stages is 

necessary to enhance both grain yield and grain Zn content 

(Stomph et al. 2011) [187]. The seed treatment process for 

categorizing Zn application can be practiced by two ways: 

seed priming and seed coating (Farooq et al. 2012) [46]. The 

seed priming is a simple and low-cost technique of soaking 

seeds in solutions of desired nutrients for a certain period of 

time (Zaman et al., 2018) [230]. The seed treatment is 

comparatively better equipped than soil application owing to 

smaller quantity of requirements and ease of application. It 

seldom improves Zn concentration in rice grain, although is 
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associated with improved germination and seedling growth 

under stressful environment (Shivay et al., 2008) [171]. In an 

experiment, Slaton et al. (2001) [178] reported that rice seed 

treatment with ZnSO4 solution or liquid 9% Zn-EDTA chelate 

(wt./wt.) was not able to improve Zn load sufficiently in 

edible rice grains. 

 

Seedling root dipping of Zn 

Although seedling root dipping is a cheaper solution to the 

worldwide phenomenon of Zn induced malnutrition to the 

human races, it is still not widely carried out till now (Johnson 

et al., 2005; Cakmak, 2008; Zaman et al., 2018) [92, 28, 230]. The 

dominant mechanism of such transport is believed to be 

diffusion although the efficiency to improve the plant growth 

and yield parameters viz. number of panicle bearing tillers, 

panicle length, number of grains per panicle and test weight 

was much lower (Rashid, 2001) [146]. Dipping of rice seedlings 

in ZnO slurry before transplanting or application of Zn 

solution of different sources can be carried out to combat Zn 

deficiency (Robson, 2012). Thus the process of seedling root 

dipping is an easy and economical method of Zn treatment but 

comparative less efficient and unsuitable for biofortification 

purpose (Imran et al., 2015) [81]. 

 

Foliar Zn application 

The discovery of Zn as an essential micronutrient for plants 

(Sommer & Lipman, 1926) [182] ushered the research on 

fertilization of crop plants with Zn fertilizers either through 

soil or foliar application (Cakmak and Kutman, 2018) [29]. The 

basis of the application is that zinc finds its way through leaf 

stomata to the vascular system when it is applied as a foliar 

spray (Zaman et al., 2018) [230] or more categorically foliar-

applied Zn is phloem-mobile and can be readily translocated 

into developing grains (Haslett et al., 2001; Erenoglu et al., 

2011) [72]. A number of Zn sources, namely ZnSO4, Zn(NO3)2, 

and Zn-EDTA, have been used on many crops (McBeath & 

McLaughlin 2014; Sharifianpour et al. 2015) [111, 170]. The 

foliar application of Zn has been proved to be an effective 

technique to increase grain Zn concentration to overcome Zn 

deficiency (Stomph et al. 2011; Zaman et al., 2018) [187, 230] 

even to the tunes of 2.5-3.5 times higher value (Yilmaz et al., 

1997; Ram et al., 2015) [225, 145]. Zhou et al. (2012) [238] and 

Phattarakul et al. (2012) [137] reported Zn applied in the form 

of foliar application of ZnSO4 improved the grain Zn by 27%. 

Significant increase in plant parameters like grain yield, straw 

biomass and grain Zn content were observed with foliar 

application of Zn as Zn-EDTA and ZnSO4 (Benedicto et al. 

2011) [14]; at proper time (Welch et al., 2013) [214] especially at 

the time of flowering (Pandey et al., 2013) [134] or grain-filling 

stage (Cakmak et al., 2010; Boonchuay et al., 2013; Abdoli et 

al., 2014) [26, 19, 1] because of low binding of Zn in soil. 

However, the agronomic biofortification is only supplemental 

for short term benefits, the longer duration viable strategies 

can be only obtained through plant breeding and genetic 

engineering approaches (Rattan, 2017; Zhang et al., 2018) [149, 

232]. 

 

Evaluation of agronomic biofortification 

The simplest means to estimate Zn biofortification is by 

collecting the grains as a whole or separating them into un-

husked (whole grain with husk), brown (whole caryopsis with 

husk removed by hand) and white (outer layers of the 

caryopsis including pericarp, testa, nucella and part of the 

aleurone layer along with the embryo removed by polishing in 

standard laboratory mill) at harvest, rinsing with distilled 

water, oven drying, acid digestion and analysis for the zinc 

content by Inductively Coupled Plasma Optical Emission 

Spectrometry (ICP-OES) (Phattarakul et al., 2012) [137] or 

Atomic Absorption Spectrophotometry (AAS) (Saha et al., 

2017) [159] or Inductively Coupled Plasma Atomic Emission 

Spectrometry (ICP-AES) (Seth et al., 2017) [168]. 

The enrichment of Zn in grains can also be assessed through 

changes in other important nutritional traits of grain (Saha et 

al., 2017) [159] viz., concentrations of Fe (Giordano and 

Mortvedt, 1972) [57] and phytic acid, the phytic acid: Zn molar 

ratio (Cakmak et al., 2010; Hussain et al., 2012) [26], protein 

(Cakmak, 2008) [28] etc. A decrease in the phytate content in 

grains can increase the bioavailability of the mineral 

micronutrient (Zhao and Shewry, 2011; Tyagi et al., 2018) 
[237, 19]. Based on the molecular weight of phytic acid = 660 

Da, zinc = 65 Da, it is computed as, 
 

PA/Zn molar ratio = 
(Phytic acid content in mg kg⁄ )/660

(Zinc content in mg kg⁄ )/65
 

 

This can also be carried out using a model Zn biofortification 

in the rice grain will be further analysed using a model 

factoring in Zn and phytate concentration (Miller et al., 2007) 
 

TAZ=0.5[Amax+TDZ+KR(1+TDP/KP)2−{(Amax+TDZ+K

R(1+TDP/KP))2−4Amax+TDZ}1/2] 
 

Where, TAZ = total daily absorbed Zn (m mol day−1), TDP = 

total daily dietary phytate (m mol day−1), TDZ = total daily 

dietary Zn (m mol d−1), Amax= maximum Zn absorption 

(0.091), KR= equilibrium dissociation constant of Zn-receptor 

binding reaction (0.033), KP= equilibrium dissociation 

constant of Zn-phytate binding reaction (0.680) developed 

through isotope studies in gastrointestinal tract of humans 

(Hussain et al., 2012; Saha et al., 2017; Rehman et al., 2018; 

Wang et al., 2019; Das et al., 2019; Maqbool and Beshir, 

2019) [159, 207, 37, 39, 152]. 
 

Genetic biofortification of zinc in rice 

The genetic strategy, due to its highly cost-effectiveness, 

seems like an optimal way to tackle malnutrition originated 

due to the deficiency of Zn in diet (Khoshgoftarmanesh et al., 

2010; Meenakshi et al., 2010) [97, 113]. For long term and stable 

benefits to be accrued to combat malnutrition, genetic 

manipulations to augment Zn load in rice endosperm deserve 

special emphasis (Swamy et al., 2016) [195] inspite of the 

complexity such as lack of a target gene, interactions between 

genotypes and environments, potential food safety risks etc 

(Solymosi and Bertrand, 2012) [181]. Different transgenic and 

conventional breeding approaches have already been made to 

have better and stable Zn density traits (Graham and Welch, 

1996; Graham et al., 1999, Goto et al. 1999; Gregorio et al. 

2000) [60, 61, 58, 63].  
 

Genetic basis of grain Zn 

The zinc distribution within the rice grain has a varying 

pattern, where the aleurone layer has around 25-30% of the 

grain zinc while the endosperm posseses 60-75% 0f the grain 

zinc which is retained even after polishing (Hansen et al. 

2009) [69]. So it is obvious that the major goal of rice 

biofortification is increasing the bioavailable zinc in the 

endosperm. 

The genetic basis of high grain Zn in brown/polished rice is 

rather complex and requires a better understanding for the 

systematic utilization of rice germplasm in Zn biofortification 

programs. Moderate to high broad sense heritability is 
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reported for grain Zn and it can be improved by breeding 

(Norton et al. 2010; Zhang et al. 2014) [127, 188], Additive and 

dominant genetic effects were confirmed from the reports 

which showed narrow sense heritability for the grain Zn. 

Reports suggest that grain Zn has been found to be 

significantly influenced by environmental factors (Gregorio 

2002; Chandel et al. 2010; Anuradha et al. 2012a) [62, 30, 31]. 

Genetic characterization of grain Zn in several Recombinant 

Inbred Lines (RILs) and also in rice germplasm collections 

has shown significant Phenotypic Co-efficient of Variation 

(PCV), Genotypic Co-efficient of Variation (GCV), 

broadsense Heritability and Genetic Advance (GA) as 

depicted in Table-1. 

 

Table 1: Genetic parameters for grain Zinc concentration in rice (Swamy et al., 2016) [195]. 
 

Sl. No Population PCV (%) GCV (%) Heritability (%) Genetic advance (% mean) Reference 

1 ADT 37 × IR68144-3B-2-2-3 19.2 18.6 94.2 37.2 Sala et al. 2013 [160] 

2 ADT 43 × IR68144-3B-2-2-3 15.6 15.2 94.1 30.4 Sala et al. 2013 [160] 

3 TRY (R) 2 × Mapillaisamba 9.3 9.2 96.8 18.6 Sala et al. 2013 [160] 

4 TRY (R) 2 × IC 255787 17.2 17.0 98.0 34.8 Sala et al. 2013 [160] 

5 Rice land races 21.9 18.4 70.6 31.9 Thongbam et al. 2012 [197] 

6 Rice hybrids 11.7 10.8 85.8 20.7 Babu et al. 2012 [7] 

7 BPT5204 × HPR14 26.1 26.0 99.4 53.6 Samak et al. 2011 [162] 

8 Rice genotypes 25.5 21.1 94.0 30.1 Bekele et al. 2013 [13, 48] 

9 IRRI38 × Jeerigesanna 18.4 17.0 85.6 32.5 Gande et al. 2013 [48] 

10 F2 population - - 96.9 - Zhang et al. 2004 [233] 

11 BIL mapping population 10.8 - 76.4 - Susanto 2008 [191] 

12 Azucena × Moromutant 40.1 36 80.6 66.6 Bekele et al. 2013 [13, 48] 

13 Bala × Azucena - - >60 - Norton et al. 2010 [127] 

14 Teqing × O rufipogon - - 41 - Garcia-Oliveira et al. 2009 [52] 

 

The data registered from the above mentioned reports 

suggests suuficient variation for grain Zn concentration along 

with moderate to high heritability and genetic advance. The 

combining ability analysis obtained from the diallele crosses 

comprising seven specific rice varieties with different levels 

of grain Zn revealed the additive genetic effects to be more 

important for grain Zn, whereas the coefficient of variation 

(CV) for grain Zn sundry significantly among the entries over 

the years and locations, thereby hinting significant genotype 

and environment interactions (G x E) (Zhang et al. 1996; 

Sharifi 2013) [234]. In another study by Zhang et al. 2004 [233] 

involving black pericarp indica rice it was reported that 

genetic and cytoplasmic effects influenced final grain Zn 

content, however the genetic effect was stronger. Single plant 

selection was suggested as an effective approach fror 

improving Zn content as it was observed that the heritability 

for the seed geetic effect was highly significant as well as the 

narrow sense heritability registered very high values. Positive 

correlation was filed between grain Zn and the other grain 

characteristics like grain weight, grain length and width of the 

grain, so the grain Zn content can be indirectly selected by 

considering these grain traits. However platykurtic and 

skewed distributions were observed for grain Zn in a RIL 

population, which indicated presence of minor genes with 

duplicate gene actions. (Banu and Jagadeesh 2014) [70]. 

Some reports also minuted positive heterosis for grain Zn. In 

a line X tester analysis which involved six lines and eight 

testers with a total of 48 hybrids, it was reported that 14 out of 

those 48 hybrids showed significant positive heterosis for 

grain Zn content over the standard chech Chittimutyalu. 

Among these 14 crosses two crosses (PR116×Chittimutyalu, 

MandyaVijay×Jalamagna) registered more than 50% heterosis 

for grain Zn (Babu et al. 2012) [7]. Transgressive seggregants 

were also recovered for grain Zn content. (Stangoulis et al. 

2007) [185]. 

Some studies reveal that grain zinc is highly linked with 

aroma while there is no pleiotropic effect of grain Zn on any 

other character. (Welch and Graham 2004; Gregorio 2002) 
[212, 62]. Some researchers reported epistatic interactions for 

grain Zn (Lu et al. 2008; Norton et al. 2010) [127]. It has been 

registered that in some cases, the genetic factors that increase 

the available Zn also co-segregate with the genetic factors 

involved in increasing Fe and other mineral elements 

(Gregorio 2002; Jiang et al. 2007) [62, 79]. Some reports also 

suggest that the grain quality and grain Zn are correlated to 

each other (Anandan et al. 2011; Zhang et al. 2004) [4, 233]. All 

the grain quality traits and other minerals with which the grain 

Zn content are associated should be taken into consideration 

while breeding for high grain Zn content. One of the pivotal 

aspect while breeding for high grain Zn content is the relation 

of grain Zn and grain yield. Several studies have registered a 

significant negative correlation between grain Zn 

concentration and grain yield in rice (Gao et al. 2006; Jiang et 

al. 2008; Norton et al. 2010; Wissuwa et al. 2007) [51, 90, 127], 

but contradictingly a positive correlation between grain yield 

and grain Zn concentration was observed under Zn deficient 

soil conditions (Gregorio 2002) [62]. No significant correlation 

was observed between grain Zn concentration and grain yield 

under Zn sufficient soil conditions for different panel of 

aromatic rice and land races. (Gangashetty et al. 2013; 

Sathisha 2013) [49, 164]. This report is also supported by the 

study of Rai et al. (2012) which stated non-significant 

correlation between grain yield and Zn in other cereal crops 

like pear millet. Therefore it is safe to conclude that it is 

possible to develop high Zn rice varieties having good yield 

potential. Evidence for the possibility of combining high grain 

Zn concentration and high yield potential in rice (Harvest Plus 

2014) [71] can be assured from the identification of high Zn 

donor lines with high yield, transgenic rice lines with high Zn 

concentration (Johnson et al. 2011; Trijatmiko et al. 2016) [91, 

198] and the recently released high Zn rice lines from 

Bangladesh. 

 

Conventional Breeding as a tool for Zn Biofortification 

Genetic biofortification is a strategy that uses plant breeding 

techniques to increase the micronutrient levels in staple food 

crops (Harvest Plus 2014) [71]. Production of high yielding 

rice varieties has been the major focus of rice breeding 

programs and selection of rice with high grain micronutrient 

concentrations has largely been ignored as a breeding 
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objective, since the breeders gave major focus on traits such 

as size, shape, appearance of grain, milling quality and 

cooking features (Graham and Welch, 1996) [60]. However 

recently emphasis has been given on nutritional aspects since 

micronutrient deficiency especially of Zn and Fe has become 

globally well recognized. (Welch, 1993; Seneweera et al., 

1996; Kennedy et al., 2002; Seneweera, 2011; Kant et al., 

2012; Myers et al., 2014) [213, 165, 96, 166, 93, 119]. Genetic 

biofotification helps to develop mineral enriched crops by 

utilizing the natural genetic variation present in the 

germplasm and therby providing sustainable solution to 

malnutrition problems (Bouis 2003; Pfeiffer and McClafferty 

2008) [61, 136]. Gregorio et al. (2000) [63] and Prom-u-thai et al. 

(2007) [142] reported considerable amount of genetic variation 

for grain Zn concentration in rice germplasm. In a study it 

was reported that Indica rice had almost two fold higher Zn 

concentration whereas slightly lower Fe concentration than 

Japonica (Yang et al., 1998. Anandan et al., 2011) [224, 4] in his 

study reported significantly lower Zn content in the seeds of 

modern rice cultivars compared to the landraces. Reports 

suggest that some wild species of rice like O. nivara, O. 

rufipogon, O. latifolia, O. officinalis and O. granulata 

contains around two- three fold higher Zn concentration than 

in cultivated rice. The Zn concentration ranges from 37 mg/kg 

to 55 mg/kg in non polished grains (Cheng et al. 2005; 

Banerjee et al. 2010; Anuradha et al. 2012) [10, 30, 31, 34]. 

Gregorio (2002) [62] registered that aromatic rice contained 

higher Zn concentration compared to no aromatic rice 

cultivars. 

Breeders always prefer simple and precise phenotyping to 

identify high Zn rice variety. Fast, accurate and inexpensive 

methods are required since breeding programs handles large 

population which requires inch-perfect screening. Seed 

sampling, hulling, and milling procedures without any metal 

contaminations have already been standardized for rice 

(Stangoulis and Sison 2008). Atomic absorption spectrometry 

(AAS) and Inductively Coupled Plasma-Optical Emission 

Spectrometry (ICP-OES) are used for elemental analysis 

(Zarcinas et al. 1987) [231]. Even though these methos are 

precise to the core but they are expensive and require highly 

skilled analysts, extensive samples and contamination free 

reagents (Velu et al. 2014) [201, 203]. Colorimetric approaches 

have been developed for several cereal crops to analyse Zn 

and Fe, however these methods are semi-quantitative and 

laborious when applied in large scale (Prom-u-thai et al. 

2003; Ozturk et al. 2006; Choi et al. 2007; Velu et al. 2008) 
[141, 129, 35, 202]. In a study it was established that non-destructive 

determination of Zn and Fe concentration to discard low Zn 

enriched rice lines can be served best by X-Ray Fluoroscence 

(XRF). It is also registered that the high Zn lines obtained by 

this method can be validated with (Paltridge et al. 2012) [133]. 

It is reported that most of the biofortification programs aiming 

to increase the Zn concentration in rice are following XRF for 

metal analysis. 

 

Breeding strategies for implementing Zn biofortifications 

The genotypic variation present in rice germplasm can be 

exploited through breeding to enhance the grain Zn 

concentration. Since the genetic basis of grain Zn is complex 

with the involvement of multiple small effect genes/QTLs and 

significantly influenced by the environment, the choice of 

appropriate breeding methods, crossing programs, individual 

plant selections and field evaluation processes are critical for 

the successful development of high-Zn rice. Previously high 

Zn donor was crossed with popular cultivar which possessed 

low grain Zn. The selection was based on favourable 

agronomic traits from the segregating population with final 

fixed lines tested for grain Zn and yield in replicated large 

scale plots. However this method was time consuming and the 

resultant lines showed moderate increase in grain Zn content 

along with moderate yield potential. Recently a more 

convenient breeding method involving the cross between high 

Zn donors with acceptable yield potential and popular high 

yielding, highly adapted but low Zn rice varieties has 

hastened the process of high Zn variety development if early 

selection for Zn testing from F4 generation onwards along 

with selection for acceptable agronomic traits are performed. 

It has been reported that multiple crosses involving several 

donors and recipient parents such as three way, four way 

crosses along with reciprocal crosses has enhanced grain Zn 

content in rice genotypes. Multi-parent Advanced Generation 

Inter-Cross (MAGIC) is also an attractive method for pooling 

the genes for high Zn, and at IRRI several MAGIC 

populations such as MAGIC-indica, MAGIC-japonica and 

MAGIC-global (utilizing crosses between indica and japonica 

MAGIC lines) have been developed (Bandillo et al. 2013) [9] 

and these are a good resource for selecting high Zn lines and 

also provides an opportunity to select transgressive segregants 

for high Zn. Nagesh et al. 2012 reported that there is 

substantial amount of heterosis for grain Zn in rice. Wild 

relatives of rice such as O. nivara, O. rufipogon, O. barthii, 

and O. longistminata, and African cultivated rice O. 

glaberrima are found to have higher level of Zn in the grains 

and these are a potential source of high Zn donors (Garcia-

Oliveira et al. 2009; Sarla et al. 2012) [52, 5]. These wild 

relatives can be exploited following advanced backcross 

breeding to combine high Zn and high yield potential. 

Mutation breeding is also gaining importance with respect of 

increasing grain Zn content in rice. A number of IR64 

mutants produced by the treatment with Sodium azide were 

reported to have high Zn (Jeng et al. 2012) [88]. Three IR64 

mutant lines viz; M-IR-180, M-IR-49, and M-IR-175 had 

more than 26 mg kg −1 Zn in polished rice as against 16 mg 

kg −1 in IR64. 

Marker assisted breeding for high Zn rice using major effect 

grain Zn QTLs is also a more faster and precise approach. 

Several major effect grain Zn QTLs with a high PV (>10%) 

and also gene-specific markers for grain Zn have been 

reported in rice, but use of these markers to assist breeding 

efforts to improve Zn concentration in rice has not been 

reported. Marker Assisted Recurrent Selection (MARS) and 

Genomics Assisted Breeding approaches are worth trying to 

develop high-Zn rice (Swamy et al., 2016) [195]. SNPs are 

widely used as marker for various breeding programmes. The 

cheaper, faster and high throughput SNP assays made it 

possible the routine use of markers in the breeding programs 

(McCouch et al. 2010; Swamy and Kumar 2013; Singh et al. 

2015) [112, 194]. Varshney et al. 2009 [200] reported that next 

generation sequencing (NGS) and third generation sequencing 

(TGS) have revolutionalised breeding to many folds. It can be 

safely stated that rice varieties with high Zn can be developed 

with these methods. In rice, 3000 accessions have been 

sequenced and efforts are ongoing to sequence 10,000 

accessions (Li et al. 2014) [103]. 

Some antinutritional element especially phytate limits the 

bioavailability of Zn. In rice Zn is preferentially stored along 

with phytate which is a strong chelator of divalent cations 

(Bohn et al. 2008; Hambidge et al. 2010; Petry et al. 2012) [18, 

68, 135]. Hence, selections should be made for low phytate 

content. Recently by mutation breeding, several mutants with 
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low phytate content have been developed and are good 

resources as low-phytate donors in breeding programs (Liu et 

al. 2007) [104]. The world’s first Zn enriched rice variety was 

released in 2013 by the Bangladesh Rice Research Institute 

(BRRI dhan 62), which is claimed to contain 20–22 mg Zn 

kg-1 for brown rice. Nonetheless this is short of the target of 

30 mg Zn kg-1 set by the HarvestPlus program (Shahzad et al., 

2014) [20]. 

 

Modern biotechnological (transgenic) approach towards 

Zn biofortification 

Crops such as rice, cassava, oilseeds and potatoes are used to 

develop transgenics. Advanced biotechnological tools are 

used to increase micronutrients like Zn, Fe and Vitamin A. 

Researches are also going on to improve other nutritional 

factors such as essential amino acids and fatty acids, as well 

as reduced antinutritional factors (such as cyanogens and 

phytates) (Gilani et al. 2007) [55] Masuda et al. (2013) [6] 

increased the accumulation of the iron storage protein ferritin 

as well as enhanced iron translocation by over expressing the 

iron(II)-nicotianamine transporter OsYSL2 in rice endosperm. 

While yield remained similar to conventional rice, the 

transgenic lines produced higher levels of iron (6-fold in the 

green house and 4.4-fold in the paddy) and zinc (1.6-fold). 

Masuda et al. (2013) [6] successfully increased iron and zinc 

accumulation even more by enhancing the uptake and 

transport of iron using the ferric iron chelator, mugineic acid. 

Targeting Fe deficiency in rice can also result in an increased 

accumulation of Zinc. Aung et al. (2013) developed a 

transgenic line commonly used in mayanmar where 

surrounding area area is iron deficiet. These plants were 

developed so that they can accumulate nore concentrations of 

Fe and Zn. It was observed that the transgenic lines 

accumulated 3-4 times higher Fe concentration whereas they 

accumulated 1.3 folds more Zn contration compared to the 

nontransgenic lines. Banaker et al. (2017) reported transgenic 

plants expressing nicotinamine and 2’- deoxymugenic acid 

(DMA) to enhance the accumulation of Fe and Zn in rice 

endosperm. The transgenic lines developed showed 2 fold 

increases in Zn accumulation and 4 fold increases in Fe 

accumulation in the endosperm of the rice lines. 

 

Conclusion 

The issue of malnutrition throughout the world cannot be 

undermined. It is more severe in developing countries like 

India where it has imposed massive health and economic 

burden in the form of surge in the cases of mortality, 

morbidity, impaired physical and neurological development, a 

rapid drop in financial productivity and hike in health care 

expenses which is an alarming situation to the human race 

especially the poorer section of the society. Researches are 

underway to find the most suitable and viable option to face 

this crisis. The widely acclaimed process of biofortification 

can play a key role in this case. Its preeminent capacity to 

curb malnutrition for human welfare is not unknown. The 

main focus of this method is increasing the content of specific 

nutrient in rice edibles to augment the nutritional availability 

through the mostly consumed dietary consumable. The 

genetic biofortification emerges the most successful long term 

solution but its complexity in adoption can efficiently be 

complemented by agronomic biofortification processes. The 

future goal of this research emphasizes on development of 

most efficient method for Zn application, finding most viable 

fertilizer source through use of chelated Zn fertilizers and 

adopting strategies amenable to need based nutrient solubility 

and mobility; and adopting more efficient genetic, breeding, 

molecular and biotechnological approaches; to serve the basic 

nutrient needs of the teeming millions. 
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