International Journal of Chemical Studies

P-ISSN: 2349–8528 E-ISSN: 2321–4902 IJCS 2019; 7(6): 2509-2513 © 2019 IJCS Received: 04-09-2019 Accepted: 06-10-2019

S Muralidharan

Ph.D. Scholar (Agronomy) Department of Agronomy, TNAU, Coimbatore, Tamil Nadu, India

K Vaiyapuri

Professor Agronomy Department of Agronomy, TNAU, Coimbatore, Tamil Nadu, India

K Ramamoorthy

Professor Agronomy Department of Agronomy, TNAU, Coimbatore, Tamil Nadu, India

R Santhi

Director Department of Natural Resource Management, TNAU, Coimbatore, Tamil Nadu, India

P Jeyakumar

Professor and Head Department of Crop Physiology TNAU, Coimbatore, Tamil Nadu, India

Corresponding Author: S Muralidharan Ph. D Scholar (Agronomy) Department of Agronomy, TNAU, Coimbatore, Tamil Nadu, India

Studies on green manure incorporation and integrated nutrient management approaches on soil available nitrogen, productivity and economics in transplanted rice – rice – green gram cropping system

S Muralidharan, K Vaiyapuri, K Ramamoorthy, R Santhi and P Jeyakumar

Abstract

A Field study was conducted at wetland farm, Department of Agronomy, Tamil Nadu Agricultural University, Coimbatore during *kharif- Rabi* – summer seasons (June/July, December/January, April /May, respectively) in 2014-15 and 2015-16 to study the integrated nutrient management for sustainable growth and production in rice-rice-green gram cropping sequence. The experiment was laid out in split plot design with the three replications. The main plot treatments comprised of incorporation of green manures and residue addition of 30% of paddy straw during both the kharif and rabi season in rice viz., M₁- *kharif-* No application of green manure; *rabi-* No application of crop residue, M₂- *kharif-* Dhaincha@ 6.25t ha⁻¹; *rabi-*No. application of crop residue, M₃-*kharif-* No application of crop residue addition of 30% paddy straw and M₄- *kharif-* Dhaincha@6.25t/ha; *rabi-* Residue addition of 30% paddy straw and M₄- *kharif-* Dhaincha@6.25t/ha; *rabi-* Residue addition of 30% paddy straw and M₄- *kharif-* Dhaincha@6.25t/ha; *rabi-* Residue addition of 30% paddy straw and M₄- *kharif-* Dhaincha@6.25t/ha; *rabi-* Residue addition of M₄S₃ (M₄-*kharif-* Dhaincha@ 6.25t ha⁻¹; *rabi-* Residue addition of 30% paddy straw; S₃- LCC based N application for green seeseed N application of M₄S₃ (M₄-*kharif-* Dhaincha@ 6.25t ha⁻¹; *rabi-* Residue addition of 30% paddy straw; S₃- LCC based N application for green seeseese N application of M₄S₃ (M₄-*kharif-* Dhaincha@ 6.25t ha⁻¹; *rabi-* Residue addition of 30% paddy straw; S₃- LCC based N application) found to be significantly superior over the other treatments.

Keywords: Soil available N, dhaincha, yield and economics

Introduction

Rice (*Oryzasativa* L.) is well known as' Wonder cereal' and is cultivated in a variety of ecological zones with wide variations in productivity. Interestingly, it is the crop that cannot be replaced by any other crop in high rainfall areas and deltaic river belts in the world. Stagnation in yield levels and increased food demand warrant an urgent need to increase the productivity of rice, the staple food for millions of people in Asia. In Asia alone, more than 2.0 billion people obtained 60 to 70 percent of their food energy from rice alone and its derived products (Kumar, 2005). India is the leading rice producer in terms of area and the second largest country in terms of productivity next to China. In India, rice is cultivated in 44.1 million hectares with an annual production of approximately 105.5 million tons and in Tamil Nadu alone contributed 3.9 percent to national rice production from an area of 2.0 million hectares with a production of 4.1 MT (Indiastat, 2018). The yield level of rice had to rise by 25 to 30 percent from the current level if the country had to remain self-sufficient by 2050.

The present study was formulated to establish most suitable and economic integrated approach of nutrient management under rice - rice - green gram cropping system with the objectives of studying the growth and productivity of sustainable rice crop production system with residue recycling and nutrient management approaches to advocate the most suitable nutrient management practice in rice – rice – green gram in sequential cropping system and working out the economics for sustainable rice production in the system as a whole.

Material and Methods

A Field experiment was conducted at Wetland farm, Department of Farm Management, Tamil Nadu Agricultural University, Coimbatore during 2014-16 to investigate the impact of

"Integrated nutrient management for sustainable growth and production in Rice- Rice - Green gram cropping system" on clay loam soils in Western agro-climatic zone of Tamil Nadu.). The soil of the experimental site was slightly alkaline (pH = 7.76) with low soluble salts (EC = 0.63 dSm⁻¹), medium in organic carbon content (0.68%), low in available Nitrogen (241 kg ha⁻¹), medium in Phosphorus (35.0 kg ha⁻¹) and high in potassium (451 kg ha⁻¹). The experiment was laid out in a split plot design having four main plot treatments and three subplot treatments replicated thrice. The treatment details of the experiment were as follows

The treatment details of the experiment were as follows

	I Сгор	II Crop
M_1	No application of green manure	No Application of crop residue
M_2	Dhaincha @6.25 t/ha	No Application of crop residue
M3	No Application of crop residue	Paddy straw residue Addition @ 30%
M_4	Dhaincha @6.25 t/ha	Paddy straw residue Addition @ 30%

The sub plot treatments were as follows

Sub plot		
S 1	:	Recommended dose of NPK
S_2	:	STCR approach
S ₃	:	LCC based N application

Inorganic fertilizer was applied based on the treatment schedules. Initially recommended dose of fertilizer (150:50:50) N, P2O5 and K₂O kg ha⁻¹were applied in the form of Urea, SSP and MOP (S1). Prior to sowing, soil sample were collected from the experimental plot for the detection of N, P₂O₅ and K₂O content based on STCR approach. In LCC approach that followed, P2O5 and K2O were applied in full dose as basal, nitrogen was applied in four equal splits viz., at 50% at basal and remaining N at three equal split viz., active tailoring, and panicle initiation and flowering stages. Dhaincha (Sesbania aculeate) was incorporated @ 6.25 t ha⁻¹ on dry weight basis two weeks prior to transplanting along with the recommended dose of 150:50:50 NPK kg ha⁻¹, where N, P and K were applied in the form of urea, single super phosphate and muriate of potash to the rice crop (Kharif season). As per the treatment schedule to the second crop of rice (Rabi season), 30% of paddy straw residue was incorporated two weeks prior to transplanting. However no fertilizers were applied to the summer raised green gram which utilizes only the residual nutrients for its growth and development. The seed rate used for study was 60 kg ha⁻¹ of rice with a spacing of 20 x 10 cm and seed rate of 20-25 kg ha⁻¹ with a spacing of 30 x 10 cm for green gram.

Results and Discussion

Soil available nitrogen

Soil available nitrogen was highly influenced by the incorporation of Dhaincha @ 6.25 t ha⁻¹ and residue addition of 30% paddy straw residue during both the years of 2015 and 2016. Incorporation of Dhaincha in the first crop of rice and residue addition of 30% paddy straw in the second crop of rice (M₄) registered higher soil available N (244.02 and 269.14 kg ha⁻¹) during summer 2015 and 2016. The lower soil available N was recorded in the treatment M₁ (175.33 and 193.37 kg ha⁻¹) during the respective stages. Among the subplot treatments, the fertilizer recommendation as per LCC based N application method (S₃) recorded higher soil available N (974 and 890 kg ha⁻¹) during summer 2015 and

2016 as compared to other fertilizer application approaches. Interaction effect have showed significant effect over the grain yield of green gram by the addition of Dhaincha @ 6.25 t ha-1 and 30% of paddy straw residue with LCC based N application (M₄S₃) produced higher soil available N (255.61 and 281.76 kg ha⁻¹) during summer 2015 and similar trend was noticed during 2016. The lower soil available N was recorded in the treatment combination M_1S_1 (156.00 and 172.11 kg ha⁻¹) simultaneously during both the years of study irrespective of the season as compared to all treatment combinations. This might be due to combined use of organic and inorganic sources of nutrients which in turn could attribute better synchrony of nutrient availability to the rice crop resulting in better biomass production and higher nitrogen use efficiency. Similar findings are also reported by Mwale *et al.*, 2000^[5]. The INM practices found to enhance the microbial activity which in turn stimulated the conversion of unavailable nutrients into available form through improving the physico- chemical properties of the soil (Katkar *et al.*, 2011)^[1].

Yield of rice

Grain yield recorded during both kharif and rabi seasons were influenced by the integrated nutrient significantly management practices. Among the main plot treatments, incorporation of Dhaincha @6.25t ha-1 during first season with the addition of 30% crop residue in the second season recorded higher grain (6481 and 5396 kg ha⁻¹) and straw yield (10396 and 9994 kg ha⁻¹) during kharif and rabi seasons respectively during irrespective of the seasons and year of study. With regard to fertilizer recommendation, fertilizer applied as per the LCC based N application (S₃) registered higher grain yield irrespective of the seasons and years of study. The fertilizer application as per LCC based N application (S₃) recorded higher grain yield (5487and 4983 kg ha⁻¹) and straw yield (8831and 8444 kg ha⁻¹) during *kharif* and rabi 2014 respectively. Similar trend was obtained during 2015 in both the seasons. Interaction effect was significant in the treatment combination where Dhaincha was incorporated at 6.25t ha-1in the first crop of rice and residue addition of 30% of paddy straw along with LCC based N application (M₄S₃) produced higher grain yield in both the seasons of 2014 and 2015 which recorded significantly higher grain yield (6777 and 5998 kg ha⁻¹) during kharif and rabi during 2014 respectively. The same treatment combination recorded higher grain yieldin rice irrespective of the seasons of both 2014 and 2015. In both the seasons of study the lowest grain yield was found in M₁S₁. (No application of green manure and recommended dose of NPK) which recorded (3835 and 3765 kg ha⁻¹) during kharif and rabi. Similar trend was recorded during 2015 also irrespective of the seasons. Increase in yield of rice with nitrogen application might be due to higher N uptake, resulting in higher biomass production and photo synthates translocation to reproductive parts. Improvement in the nutrient use efficiency of the applied inorganic nitrogen in transplanted rice after green manure incorporation; also may be the reason for higher yield. This result was supported by Yadvinder-Singh et al. (1991)^[7].

Residual effect on succeeding green gram

Significant impact was noticed by incorporation of Dhaincha@6.25 t ha⁻¹ and residue addition of 30% paddy straw residue in rice crops with regard to grain yield of green gram. Incorporation of Dhaincha in the first crop of rice and residue addition of 30% paddy straw in the second crop of

rice (M_4) registered higher grain yield (604 and 579 kg ha⁻¹) and haulm yield (1243 and 1210 kg ha⁻¹) during summer 2015 and 2016 respectively. This was next followed by treatment M₂ during the summer season of both the years. The lower grain yield was recorded in the treatment M_1 (449 and 424 kg ha⁻¹) during the same respective stages. Among the subplot treatment, the fertilizer recommendation as per LCC based N application method (S₃) recorded higher grain yield of green gram (552 and 521 kg ha⁻¹) during summer 2015 and 2016 respectively when compared to other fertilizer application methods. Interaction effect have showed significant effect over the grain yield of green gram by the addition of Dhaincha@ 6.25 t ha⁻¹ and 30% of paddy straw residue with LCC based N application (M₄S₃) produced higher grain yield (625 and 634 kg ha⁻¹) during summer 2015 and similar trend was noticed during 2016 respectively. The lower grain yield was recorded in the treatment combination M_1S_1 (401 and 387 kg ha-1) simultaneously during both the years of study irrespective of the season. These results are in conformity with Pramanick et al. (2007).

Economics

The economic analysis of integrated nutrient management revealed that higher economic benefits were realized under M₄S₃ (M₄-kharif- Dhaincha @ 6.25t ha⁻¹; rabi- Residue addition of 30% paddy straw; S₃- LCC based N application) ratio was also associated with M₄S₃ (M₄-kharif- Dhaincha @ 6.25t ha⁻¹; rabi- Residue addition of 30% paddy straw; S₃-LCC based N application) (3.99 and 4.08). It may be concluded that M₄S₃ (M₄-kharif- Dhaincha @ 6.25t ha⁻¹; rabi-Residue addition of 30% paddy straw; S₃- LCC based N application) can be a suitable and economical integrated nutrient management for transplanted rice and higher productivity. The cost of cultivation was higher in all the treatments compared to control, which might be due to additional inputs. The highest gross returns, net returns and returns per rupee investment were recorded with M₄S₃. This might be due to higher yields of rice - rice-greengram sequence that resulted in higher net returns and benefit cost ratio. These results are in conformity with Mathew (1994)^[4].

Table 1: Effect on post-harvest soil available	ole N (kg ha ⁻¹) as influe	nced by INM on succeeding green	ngram during summer 2015-16
--	--	---------------------------------	-----------------------------

T	Soil available N (kg ha ⁻¹)- Summer 2015						Soil available N (kg ha ⁻¹)- Summer 2016				
Treatment	S_1	S	2	S ₃	Mean	S	1	S_2	S ₃	Mean	
M_1	156.00	0 184	.00	186.00	175.33	172	2.11	203.00	205.00	193.37	
M ₂	M ₂ 202.00		.00	214.00	209.00	223	3.23	221.00	236.43	226.89	
M 3	187.13	3 198	.54	207.43	197.70	207	.00	226.32	229.12	220.81	
M_4	232.32	2 244	.12	255.61	244.02	256	5.65	269.00	281.76	269.14	
Mean	194.30	6 209	.42	215.76		214	.75	229.83	238.08		
		М	S	M at S	S at M	1	Μ	S	M at S	S at M	
SEd		10.46	4.07	12.39	8.13	8.13 11.09		8.14	17.31	16.28	
CD(P=0	.05)	25.60	8.62	29.16	17.25	2	27.13	17.26	39.02	34.51	

Main plot Sub plot

	І Сгор	II Сгор		
M_1	No application of green manure	No Application of crop residue	S_1	Recommended dose of NPK
M_2	Dhaincha @6.25 t/ha	No Application of crop residue	S_2	STCR approach
M ₃	No Application of crop residue	Residue Addition of 30% paddy straw	S ₃	LCC based N application
M_4	Dhaincha @6.25 t/ha	Residue Addition of 30% paddy straw		

 $(192493ha^{-1} \text{ and } 195073 \text{ ha}^{-1})$ followed by M₂S₂ (M₂- *kharif*- Dhaincha @ 6.25t ha⁻¹; *rabi*-No. application of crop residue, S₂-STCR approach (163239 ha⁻¹ and 161607 ha⁻¹) cropping system as a whole during 2014-15 and 2015-16. Higher benefit-cost

Table 2: Grain yield (kg ha ⁻¹) as influenced by	y INM practices in rice during <i>kharif</i> 2014-15
--	--

Treatment	Grair	n yield (kg	gha ⁻¹) – Kha	arif 2014	Grain yield (kg ha ⁻¹) – Rabi 2014				
Treatment	S_1	S_2	S ₃	Mean	S ₁	S_2	S ₃	Mean	
M_1	3835	4206	4748	4263	3765	3911	4577	4084	
M ₂	4885	5967	5481	5444	4761	5440	4475	4892	
M 3	4245	5887	4940	5024	5063	5593	4882	5179	
M_4	5905	6760	6777	6481	5276	4915	5998	5396	
Mean	4718	5705	5487		4716	4965	4983		
	М	S	M at S	S at M	М	S	M at S	S at M	
SEd	247	170	371	339	223	131	309	263	
CD(P=0.05)	605	359	841	719	546	278	708	557	

Treatment	Stray	w yield (kg	ha ⁻¹) - Kha	rif 2014	Straw yield (kg ha ⁻¹) - Rabi 2014					
Treatment	S 1	S ₂	S ₃	Mean	S 1	S2	S 3	Mean		
M_1	5562	6566	7936	6688	5704	7617	6533	6618		
M_2	8977	10549	9134	9553	7231	8017	8185	7811		
M3	7041	8418	7380	7613	8242	8420	8082	8248		
M_4	9575	10743	10871	10396	9124	9879	10978	9994		
Mean	7789	9069	8831		7575	8483	8444			
	М	S	M at S	S at M	М	S	M at S	S at M		
SEd	370	141	436	283	425	234	572	468		
CD(P=0.05)	905	300	1027	599	1041	497	1316	993		

Main plot Sub plot

	І Сгор	П Сгор		
M_1	No application of green manure	No Application of crop residue	S_1	Recommended dose of NPK
M_2	Dhaincha @6.25 t/ha	No Application of crop residue	S_2	STCR approach
M_3	No Application of crop residue	Residue Addition of 30% paddy straw	S ₃	LCC based N application
M_4	Dhaincha @6.25 t/ha	Residue Addition of 30% paddy straw		

Treatment	G	rain yie	ld (kg l	ha ⁻¹) – khar	rif 2015	Grain yield (kg ha ⁻¹) – Rabi 2015					
Treatment	S_1		S ₂	S 3	Mean	S_1	S2	S 3	Mean		
M_1	4340	4	941	4809	4697	4138	5042	2 4859	4680		
M ₂	5425	5	696	5295	5472	4687	5780) 5265	5244		
M3	5188	4	680	5430	5099	5549	4595	5 5365	5170		
M_4	6370	6	745	6920	6679	5498	6053	6093	5881		
Mean	5331	5	516	5614		4968	5368	5396			
	Μ	S	M at S	S at M	М	S	M at S	S at M			
SEd		232	151	339	303	265	166	379	333		
CD(P=0.0	05)	569	321	772	642	648	352	864	705		

Table 3a: Straw	vield (kg ha ⁻¹)) as influenced by INM	practices in rice durir	g kharif 2015
Lable Su. Suum	yield (Kg Ild)	, as minucheed by man	practices in fice durin	15 Milling 2015

Treatment	St	raw yi	eld (kg	ha ⁻¹) - kharif	2015	Straw yield (kg ha ⁻¹) - Rabi 2015				
Treatment	S1	5	S2	S 3	Mean	S 1	S2	S 3	Mean	
M1	6979	80)66	9173	8073	5404	7103	3 7959	6822	
M ₂	9292	78	825	8025	8381	7807	7291	1 9473	8190	
M3	7804	82	247	8994	8349	6538	7317	7 8615	7490	
M4	9109	10	891	10791	10263	10155	9773	3 10018	9982	
Mean	8296	87	757	9246		7476	7871	l 9016		
		Μ	S	M at S	S at M	Μ	S	M at S	S at M	
SEd		345	207	483	414	321	227	490	454	
CD(P=0.0	5)	844	439	1105	879	785	481	1108	962	

Main plot Sub plot

	І Сгор	II Crop		
M_1	No application of green manure	No Application of crop residue	S_1	Recommended dose of NPK
M_2	Dhaincha @6.25 t/ha	No Application of crop residue	S_2	STCR approach
M ₃	No Application of crop residue	Residue Addition of 30% paddy straw	S ₃	LCC based N application
M_4	Dhaincha @6.25 t/ha	Residue Addition of 30% paddy straw		

Table 4: Grain yield kg ha⁻¹ by INM of greengram during summer 2015-16

Treatment	Grain yield kg ha ⁻¹ (2015)					Grain yield kg ha ⁻¹ (2016)					2016)	
Treatment	S ₁		S_2	S ₃	N	/lean		S ₁	S	2	S ₃	Mean
M1	401		472	474		449	(T)	387	46	52	424	424
M2	484		477	584		515	4	458	53	3	518	503
M3	450		513	527		497	5	501	43	6	506	481
M4	573		614	625		604	5	580	52	2	634	579
Mean	477		519	552		482		488 521		521		
		М	S	M at S		S at M		Μ	S		M at S	S at M
SEd		23	11	29	22			21	12		29	25
CD(P=0.05)		57	23	68		47		52	26		67	53

Table 4a: Haulm yield kg ha	¹ by INM of green gram	during summer 2015-16
Labic 4a. Haunn yleid kg na	by invitor green grain	during summer 2015-10

Treatment	haulm yield kg ha ⁻¹ (2015)					haulm yield kg ha ⁻¹ (2016)				
Treatment	S ₁	L	S_2	S_3	Mean	S_1	S	2	S ₃	Mean
M_1	87	9	1017	1026	974	796	93	3	942	890
M_2	115	50	1034	1166	1117	940	104	45	1061	1015
M 3	110)9	1124	1134	1122	1005	102	20	1030	1018
M_4	118	38	1237	1304	1243	1154	12	12	1265	1210
Mean	108	32	1103	1158		974	10	53	1075	1034
		М	S	M at S	S at M	М	S	N	A at S	S at M
SEd		47	29	67	59	46	32		69	64
CD(P=0.05)		115	62	153	124	112	68		157	136

Main	plot	Sub	plot

	І Сгор	П Сгор		
M_1	No application of green manure	No Application of crop residue	S_1	Recommended dose of NPK
M_2	Dhaincha @6.25 t/ha	No Application of crop residue	S_2	STCR approach
M ₃	No Application of residue	Residue Addition of 30% paddy straw	S_3	LCC based N application
M_4	Dhaincha @6.25 t/ha	Residue Addition of 30% paddy straw		

				0	11 0 5			
		2014-15		2015-16				
Treatment	Cost of Cultivation (Rs./ha)	Gross return (Rs./ha)	Net return (Rs./ha)	BCR	Cost of Cultivation (Rs./ha)	Gross return (Rs./ha)	Net return (Rs./ha)	BCR
M1S1	56873	151198	94325	2.66	56343	164374	108031	2.92
M1S2	55543	168626	113083	3.04	54846	195139	140293	3.56
M1S3	56357	185636	129279	3.29	55731	192343	136612	3.45
M2S1	60223	194098	133875	3.22	59603	200481	140878	3.36
M2S2	58893	222132	163239	3.77	58196	219803	161607	3.78
M2S3	59707	207005	147298	3.47	59081	211227	152146	3.58
M3S1	61223	185475	124252	3.03	60603	206199	145596	3.40
M3S2	60547	222002	161455	3.67	59196	184681	125485	3.12
M3S3	60289	197776	137487	3.28	60081	213841	153760	3.56
M4S1	64573	225587	161014	3.49	63953	236446	172493	3.70
M4S2	63661	238767	175106	3.75	62546	248032	185486	3.97
M4S3	64293	256786	192493	3.99	63431	258504	195073	4.08

Table 5: Economic of rice rice green gram cropping system 2014-16

Data not statistically analysed

Conclusion

From the above results, it can be concluded that higher soil available nitrogen, yield, gross returns and net returns were obtained with M_4S_3 (M_4 -*kharif*- Dhaincha@ 6.25t ha⁻¹; *rabi*-Residue addition of 30% paddy straw with S_3 - LCC based N application), however it was on par with M_4S_3 (M_2 - *kharif*-Dhaincha@ 6.25t ha⁻¹; *rabi*-No. application of crop residue, S_2 - STCR approach). Over all, it can be concluded that from the present investigation, M_4S_3 (M_4 -*kharif*- Dhaincha@ 6.25t ha⁻¹; *rabi*-Residue addition of 30% paddy straw; S_3 - LCC based N application) can be recommended for effective integrated nutrient management and higher productivity and profitability of transplanted rice.

References

- 1. Katkar RN, Soune BA, Kadu PR. Long term effect of fertilization on soil chemical and biological characteristics and productivity under sorghum wheat system in vertisol. Indian journal of agricultural science. 2011; 81(8):34-739.
- 2. Kumar Avil K, Reddy and NV, Sadasiva Rao K. Profitable and energy efficient rice based cropping systems in Northern Telangana of Andhra Pradesh. Indian Journal of Agronomy. 2005; 50(1):6-9.
- Mahadev Pramanicket, Arup Kumar Das, Jana, P.K., Mandal, S.S and Avijit Dwary. Production potentiality of rice in rice-rape seed greengram cropping sequence under system based nutrient management. *Oryza*. 2007; 44(2):121-124.
- Mathew J, Bridgit TK, Kamalam Joseph. Integration of organic and inorganic nutrient sources in transplanted lowland rice. Journal of Tropical Agriculture. 1994; 32:166-167.
- 5. Mwale M, Mapiki A, Phiri LK. To synchronize nutrient availability with plant uptake. In the biology and fertility of tropical soils. A TSBF Report 1997-1998-2000, 40-41. WWW.indiastat.com
- 6. Yadvinder Singh CS, Khind, Bijay Singh.. Efficient management of leguminous green manure in wetland rice. Advances in Agronomy, 1991; 45:135-215.