International Journal of Chemical Studies

P-ISSN: 2349–8528 E-ISSN: 2321–4902 IJCS 2019; 7(6): 859-864 © 2019 IJCS Received: 13-09-2019 Accepted: 15-10-2019

KM Nelwade

Department of Soil Science and Agricultural Chemistry, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India

RA Jadhav

Department of Soil Science and Agricultural Chemistry, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India

VA Raut

Department of soil science and Agricultural Chemistry, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Maharashtra, India

Syed Ismail

Department of Soil Science and Agricultural Chemistry, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India

Corresponding Author: KM Nelwade Department of Soil Science and

Agricultural Chemistry, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India

Influence of co-inoculation of different bacterial cultures with *Rhizobium phaseoli* on nutrient content and uptake in blackgram (*Vigna mungo*)

KM Nelwade, RA Jadhav, VA Raut and Syed Ismail

Abstract

A field experiment was conducted during *kharif* season of 2018 at Research farm, Department of Soil Science and Agricultural Chemistry, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani to evaluate co-inoculation effect of different bacterial cultures with *Rhizobium phaseoli* on nutrient content and uptake in blackgram, grown in vertisols. Experiment consist of ten treatments in which eight preevaluated bacterial cultures in laboratory (*Rhizobium phaseoli, Bacillus megaterium, Bacillus subtilis, Bacillus polymyxa, Pseudomonas striata, Pseudomonas flurescens, Azotobacter chroococcum and Azospirilllum lipoferum*) and were used with RDF in randomized block design. Seed treatment of black gram was done with bacterial cultures along with application RDF at the time of sowing. Results emerged out indicated that the both macronutrient and micronutrient content and uptake were significantly improved by co-inoculation over non-inoculation and single inoculation of *Rhizobium phaseoli* + *Pseudomonas striata* and *Rhizobium phaseoli* + *Pseudomonas flurescense* found to be at par with each other and having more potential than the other combinations.

Keywords: Blackgram, nutrient content, nutrient uptake, co-inoculation, bacterial cultures

Introduction

Blackgram (Urad) is annual pulse crop and native to Central Asia. At national level it is the 3rd important crop, was cultivated over an area of 5.44 Mha (kharif + rabi) and recorded a production of 3.56 Mt at a productivity level of 655 kg ha⁻¹. Major contributing states have been Madhya Pradesh, Rajasthan, Andhra Pradesh, Uttar Pradesh, Tamil Nadu, Maharashtra, Jharkhand and Gujarat. Maharashtra contribute 9.62 per cent (4.84 lakh ha) to the total area under blackgram and 5.39 per cent (1.77 lakh tones) to the total production (Anonymous 2018). This crop is endowed with many desirable characters like, short in duration, restorative (soil fertility building crops), low water requiring and highly suitable to be grown in mixed or intercropping systems and also as a catch crop to scavenge the residual soil moisture and fertility. It is rich source of deity protein (24%), carbohydrate (67%), Fibre (3.5%), fat (1.74%) and major portion of lysine in a vegetarian diet (Elangaimannan et al. 2008). Black gram is rich in potassium, phosphorous, calcium, sodium and vitamins (retinoic acid, thiamine, riboflavin). It has several therapeutic properties like curing diabetes, sexual dysfunction, and nervous hair and digestive system disorders. These properties are based on nutrient uptake potential of blackgram which directly influence the nutrient content. Keeping these points in view the present study were carried out by using different bacterial cultures. Different bacterial genera are vital components of soils. They are involved in various biotic activities of the soil ecosystem to make it dynamic for nutrient turn over and sustainable for crop production. In the rhizosphere the synergism between various bacterial genera such as Bacillus, Pseudomonas and Rhizobium has been demonstrated to promote plant growth and development. Compared to single inoculation, co-inoculation has improved the absorption of nitrogen, phosphorus and mineral nutrients by plants (Dashadi et al. 2011)^[8].

Materials and Methods

A field experiment was conducted during *kharif* season of 2018 at Research farm, Department of Soil Science and Agricultural Chemistry, Vasantrao Naik Marathwada Krishi Vidyapeeth Parbhani to assess the co-inoculation effect of different bacterial cultures with *Rhizobium phaseoli* on nutrient dynamics.

Experiment consist of ten treatments in which eight preevaluated bacterial cultures in laboratory (Rhizobium phaseoli, Bacillus megaterium, Bacillus subtilis, Bacillus polymyxa, Pseudomonas striata, Pseudomonas flurescens, Azotobacter chroococcum and Azospirillum lipoferum) and were used with recommended dose of fertilizer (25:50:00:10 N:P:K and S kg ha⁻¹ respectively) in randomized block design. Seed treatment of black gram was done with bacterial cultures along with application RDF at the time of sowing. The data obtained were statistically analyzed and appropriately interpreted as per the methods described by Panse and Sukhatme (1985). Appropriate standard error (S.E.) and critical differences (C.D.) at 5 per cent levels were worked out for interpretation of result. The treatment wise plant samples of black gram were collected at harvest stage and by following standard procedures the prepared samples were stored in polythene bags with proper labelling for chemical analysis (Bhargava and Raghupathi, 2001). The chemical analysis for determination of nutrient contents in blackgram was carried out as per standard methods. The data obtained were statistically analyzed and appropriately interpreted as per the methods described by Panse and Sukhatme (1985). Appropriate standard error (S.E.) and critical differences (C.D.) at 5 per cent levels were worked out for interpretation of result.

Result and Discussion

Effect on Macronutrient Content

The data presented in Table 1 indicates influence of coinoculation of different bacterial cultures with *Rhizobium phaseoli* on macronutrient content i.e. nitrogen (N), phosphorous (P) and potassium (K) in seed and straw of blackgram.

Effect on Nitrogen (N) Content

The treatment T_7 receiving co-inoculation of *Rhizobium* phaseoli with *Pseudomonas striata* is significantly superior over other treatments in case of seed (3.75%) and straw nitrogen content (1.68%) and treatment T_4 receiving co-inoculation of *Rhizobium* phaseoli and Bacillus megaterium (3.69%) and T_8 receiving co-inoculation of *Rhizobium* phaseoli and *Pseudomonas* flurescens (3.57%) was found at par with T_7 in case of straw nitrogen.

In line of our work, Yadav et al. (2008) [23] found that combined inoculation of Rhizobium isolates along with PSB and PGPR increases the nitrogen content in black gram. Also, Verma et al. (2010)^[22] reported that maximum nitrogen in grain and straw in dual inoculation of *Rhizobium sp.* and *P*. flurescens over uninoculated control. Qureshi et al. (2011)^[17] also estimated co-inoculation enhanced the N content in plant matter (1.22 and 1.25%) which was at par with Bacillus and rhizobial inoculation alone. Further, Badawi et al. (2011)^[6] exhibited that the percentage increases in the shoot N-content were 66.38%, 59.74% and 60.34%, in the first season and 108.25%, 65.90% and 82.92%, in the second season, due to co-inoculation with S. marcescens, T. harzianum and their mixture, respectively, above the uninoculated control. Singh et al. (2016) [19] resulted that dual inoculation of Rhizobium + PSB recorded the maximum nitrogen content (3.68 and 0.62%) and found superior to control (2.93 %).

Effect on Phosphorous (P) content

Maximum phosphorous content was observed under treatment T_8 (RDF + *Rhizobium phaseoli* + *Pseudomonas flurescens*) in seed (0.36 %) and straw content (0.43 %) black gram which significantly differed from all other treatments at 5 per cent level of significance. Treatment T_4 (RDF + *Rhizobium phaseoli* + *Bacillus megaterium*) and T_7 (RDF + *Rhizobium phaseoli* + *Pseudomonas striata*) with 0.35 per cent (seed) and 0.41 per cent (straw) were found at par with T_8 .

Sr No	Treatment	N con	tent (%)	P cont	ent (%)	K content (%)	
Sr. No.	Treatment	Seed	Straw	Seed	Straw	Seed	Straw
T1	Absolute control	2.86	1.28	0.31	0.38	1.18	1.77
T_2	Only RDF	3.09	1.38	0.32	0.39	1.20	1.91
T ₃	RDF + Rhizobium phaseoli	3.23	1.43	0.32	0.39	1.22	1.93
T_4	T ₃ + Bacillus megaterium	3.69	1.63	0.35	0.41	1.28	2.38
T5	T ₃ + Bacillus subtilis	3.49	1.52	0.34	0.40	1.27	2.19
T ₆	T ₃ + Bacillus polymyxa	3.30	1.43	0.33	0.39	1.24	2.10
T ₇	T ₃ + Pseudomonas striata	3.75	1.68	0.35	0.41	1.31	2.68
T8	T ₃ + Pseudomonas flurescens	3.57	1.62	0.36	0.43	1.28	2.44
T9	$T_3 + Azotobacter chroococcum$	3.43	1.42	0.33	0.40	1.22	2.13
T ₁₀	T ₃ + Azospirillum lipoferum	3.40	1.37	0.33	0.39	1.21	2.17
	S.Em.±	0.06	0.03	0.003	0.003	0.007	0.03
	C.D. at 5 %	0.18	0.09	0.01	0.01	0.02	0.08

Table 1. Effect of co-inoculation of different bacterial cultures with Rhizobium phaseoli on macronutrient content in black gram

Our results are similar to the results reported by Verma *et al.* (2010) ^[22] that maximum phosphorous in grain 52.78 and 34.21% and in straw 36.04 and 33.04% in inoculation of *Rhizobium sp.* and *P. flurescens* over un-inoculated control respectively. Qureshi *et al.* (2011) ^[17] also estimated highest grain P-content (0.28 and 0.30%) by co-inoculation over control. Singh *et al.* (2016) ^[19] resulted that dual inoculation of *Rhizobium* + PSB recorded the maximum phosphorous content (1.30 and 0.59%) and found superior to control (1.03 and 0.48%).

Effect on Potassium (K) content

The treatment T_7 receiving co-inoculation of *Rhizobium* phaseoli with Pseudomonas striata shows maximum K

content in seed (1.31 %) and straw (2.68 %) which significantly differ from rest of treatments and it followed by T_4 receiving co-inoculation of *Rhizobium phaseoli* with *Bacillus megaterium* (1.28 and 2.38 %) and T_8 receiving co-inoculation of *Rhizobium phaseoli* with *Pseudomonas flurescens* (1.28 and 2.44 %).

Mishra *et al.* (2011) ^[13] analyzed K contents of shoot for various treatments after the harvest of crop and found dual inoculations of *Pseudomonas spp.* and *R. leguminosarum*-PR1 had significantly higher levels of shoot K compared to *R. leguminosarum*-PR1 alone. Similarly, Singh *et al.* (2016) ^[19] noted that dual inoculation of *Rhizobium* + PSB recorded the

maximum potassium content (0.49 and 1.20 %) and found superior to control (0.46 and 1.16 %).

Effect on Macronutrient Uptake (N, P and K) Effect on Nitrogen (N) Uptake

Significantly highest value of N uptake i.e. by seed, straw and total uptake was recorded in T₄ (23.49, 23.00 and 46.48 kg ha⁻¹ respectively) over rest of treatments and treatment T₇ (22.60, 23.26 and 45.86 kg ha⁻¹ respectively) and T₈ (21.92, 21.20 and 43.13 kg ha⁻¹ respectively) found at par with T₄. The lowest value was recorded in treatment T₁ (absolute control). The co-inoculation enhanced the N-fixation in all the treatments as compared to T₁ and T₂.

Earlier, Singh *et al.* (2007) ^[20] showed that the dual as well as multi inoculation of biofertilizers with or without FYM increased the uptake of nitrogen while Similarly, Amule *et al.* (2013) found that N uptake increases by 25%, due to co-inoculation over mono-inoculation. Patil *et al.* (2013) ^[15] also reported that finger millet treated with dual inoculum of AM fungi and *Azosprillium sp.* showed higher N uptake (12.40 kg ha⁻¹) when compared to control plants (9.36 kg ha⁻¹) respectively. Singh et al. (2016) ^[19] reported that the maximum uptake of N by black gram grain (48.61 kg ha⁻¹), straw (14.14 kg ha⁻¹), and total (62.75 kg ha⁻¹) was found in treatment *Rhizobium* + PSB which was significantly superior over rest of the treatments.

Table 2: Effect of co-inoculation of different bacterial cultures with <i>Rhizobium phaseoli</i> on macronutrient uptake in black gram	Table 2: E	Effect of co-inc	oculation of	different b	oacterial	cultures	with <i>R</i>	Rhizobium	phaseoli	on macronutrient	uptake i	n black gram
--	------------	------------------	--------------	-------------	-----------	----------	---------------	-----------	----------	------------------	----------	--------------

Sr. No.	Treatment		N uptake (kg ha ⁻¹)			P uptake (kg ha ⁻¹)			K uptake (kg ha ⁻¹)		
		Seed	Straw	Total	Seed	Straw	Total	Seed	Straw	Total	
T_1	Absolute control	13.94	12.04	25.98	1.87	2.95	4.82	5.77	16.62	22.39	
T ₂	Only RDF	15.96	14.43	30.40	2.00	3.30	5.29	6.23	20.01	26.24	
T3	RDF + Rhizobium phaseoli	18.47	17.68	36.14	2.23	3.97	6.20	6.96	23.85	30.81	
T ₄	T ₃ + Bacillus megaterium	23.49	23.00	46.48	2.60	4.92	7.52	8.14	33.50	41.65	
T5	$T_3 + Bacillus subtilis$	20.06	17.52	37.58	2.29	3.89	6.18	7.30	25.27	32.57	
T ₆	T ₃ + Bacillus polymyxa	16.35	15.57	31.92	1.93	3.58	5.51	6.14	23.00	29.13	
T ₇	T ₃ + Pseudomonas striata	22.60	23.26	45.86	2.54	4.55	7.09	7.86	37.09	44.96	
T ₈	T ₃ + Pseudomonas flurescens	21.92	21.20	43.13	2.61	4.94	7.55	7.82	31.97	39.79	
T9	$T_3 + Azotobacter chroococcum$	17.11	15.79	32.90	1.97	3.65	5.63	7.96	23.77	32.83	
T ₁₀	T ₃ + Azospirillum lipoferum	18.63	15.56	34.19	2.16	3.77	5.93	6.65	24.68	31.34	
	S.Em.±	0.58	0.70	1.14	0.07	0.16	0.21	0.23	0.86	1.00	
	C.D. at 5 %	1.72	2.07	3.38	0.22	0.47	0.62	0.67	2.55	2.96	

Effect on Phosphorus (P) uptake

Significantly highest value of P uptake i.e. by seed, straw and total was recorded in treatment T_8 (2.61, 4.94 and 7.55 kg ha⁻¹, respectively) and treatment T_4 (2.60, 4.92 and 7.52 kg ha⁻¹, respectively) and T_7 (2.54, 4.55 and 7.09 kg ha⁻¹, respectively) found at par with T_8 . The lowest values in case of both content and uptake were recorded under treatment T_1 (absolute control).

Phosphorus solubilizers along with Rhizobium increased the availability thereby improved phosphorus nutrition of plant and uptake of nutrient manifested in increased concentration (Mir et al. 2011). Similarly, Amule et al. (2013) found that P uptake increases by 17%, due to co-inoculation over monoinoculation. Moreover, Patil et al. (2013) [15] reported that finger millet treated with dual inoculum of AM fungi and azosprillium showed higher P uptake (6.77 kg ha⁻¹) when compared to control plants (4.86 kg ha⁻¹). Singh et al. (2016) ^[19] found that the maximum uptake of P by black gram by grain (17.17 kg ha⁻¹), straw (13.45 kg ha⁻¹) and its total uptake (30.62 kg ha⁻¹) was found in treatment *Rhizobium* + PSB which was significantly superior over rest of the treatments. Further, Tiwari et al. (2018)^[21] reported that treatment RDF + 25 kg ZnSO4 ha⁻¹ + Seed inoculation with *Rhizobium* + PSB + 1.0 g ammonium molybdate kg⁻¹ seed in lentil recorded significant uptake of P (8.57 kg ha⁻¹) over rest of treatments.

Effect on Potassium (K) uptake

Significantly highest value of K uptake i.e. seed, straw and total uptake was recorded in treatment T_7 (7.86, 37.09 and 44.96 kg ha⁻¹, respectively) and followed by treatment T_4 (8.14, 33.50 and 41.65 kg ha⁻¹, respectively). The lowest values for both content and uptake in black gram were recorded under treatment T_1 (absolute control).

Earlier, Singh *et al.* (2007) ^[20] conducted a field experiment on soybean and result showed that the dual as well as multi

inoculation of biofertilizers with or without FYM increased the uptake of K. Amule *et al.* (2013) also found that K uptake increases by 9 %, due to co-inoculation over mono-inoculation. Singh et al. (2016)^[19] revealed that the maximum total uptake of K by black gram (33.84 kg ha⁻¹) was found in treatment *Rhizobium* + PSB which was significantly superior over rest of the treatments.

Effect on Micronutrient Content (Zn, Cu, Fe and Mn)

The data presented in Table 3a. and 3b. indicates that the concentration of zinc (Zn) and ferrous (Fe) and copper (Cu) and manganese (Mn) respectively, in blackgram seed and straw as influenced by co-inoculation of different bacterial cultures with *Rhizobium phaseoli*.

Effect on Zinc (Zn) content

The Zn content of seed and straw found maximum in treatment T_7 receiving co-inoculation of *Rhizobium phaseoli* and *Peudomonas striata* (75.68 and 64.07 mg kg⁻¹, respectively) which significantly differed from other treatments and treatment T_4 having co-inoculation of *Rhizobium phaseoli* and *Bacillus megaterium* (71.59 and 61.32 mg kg⁻¹, respectively) and T_8 having o-inoculation of *Rhizobium phaseoli* and *Pseudomonas flurescens* (72.64 and 63.07 mg kg⁻¹, respectively) found at par with T_7 (Table 3a.).

Our findings were matched with Mishra *et al.* (2011) ^[13] that lentil cultivar receiving single or dual inoculations of *Pseudomonas sp.* and *R. leguminosarum*-PR1 had significantly higher levels of shoot Zn compared to the *R. leguminosarum*-PR1 alone. Whereas, Dashadi *et al.* (2011) ^[8] observed that mixed inoculation of faba bean with *Rhizobium* and *Azospirillum* and *Rhizobium* and *Azotobacter* combinations led to changes in total Zn content. Similarly, Selvakumar *et al.* (2012) ^[18] also reported co-inoculation of Sorghum with *Azospirillum* and *Glomus* significantly increased Zn content. Tiwari *et al.* (2018) ^[21] found that treatment RDF + 25 kg ZnSO4 ha⁻¹ + Seed inoculation with *Rhizobium* + PSB + 1.0 g ammonium molybdate kg⁻¹ seed in lentil recorded significant total Zn content over control

treatment and was found at par with RDF + Seed inoculation with *Rhizobium* + PSB + 1.0 g ammonium molybdate kg⁻¹ seed.

Table 3a: Effect of co-inoculation of different bacterial cultures with Rhizobium phaseoli on micronutrient content (Zn and Fe) in black gram

Sr. No.	Treatment	Zn conter	nt (mg kg ⁻¹)	Fe content (mg kg ⁻¹)		
SI. NO.		Seed	Straw	Seed	Straw	
T1	Absolute control	58.85	52.63	203.29	170.62	
T ₂	Only RDF	59.43	55.15	205.53	177.41	
T3	RDF + Rhizobium phaseoli	64.97	55.39	204.77	178.65	
T4	$T_3 + Bacillus megaterium$	71.59	61.32	232.94	202.84	
T5	T ₃ + Bacillus subtilis	67.88	59.15	219.08	192.38	
T ₆	T ₃ + Bacillus polymyxa	66.41	56.95	210.81	190.71	
T ₇	T ₃ + Pseudomonas striata	75.68	64.07	240.87	206.66	
T8	$T_3 + Pseudomonas flurescens$	72.64	63.07	224.43	202.12	
T9	$T_3 + Azotobacter chroococcum$	63.74	59.53	215.04	192.24	
T10	T ₃ + Azospirillum lipoferum	67.17	60.41	209.35	192.17	
	S.Em.±	1.60	1.70	4.43	4.45	
	C.D. at 5 %	4.75	5.06	13.17	10.25	

Effect on Ferrous (Fe) content

The Fe content of seed and straw found maximum in treatment T_7 receiving co-inoculation of *Rhizobium phaseoli* and *Pseudomonas striata* (240.87 and 206.66 mg kg⁻¹, respectively) over other treatments followed by treatment T_4 having co-inoculation of *Rhizobium phaseoli* and *Bacillus megaterium* (232.94 and 202.84 mg kg⁻¹, respectively) and T_8 having co-inoculation of *Rhizobium phaseoli* and *Pseudomonas flurescens* (224.43 and 202.12 mg kg⁻¹, respectively) (Table 3a.).

In line of our works, Mishra *et al.* (2011) ^[13] analyzed Fe contents of shoot for various treatments after the harvest of crop at 40 and 60 days after sowing (DAS) and results revealed that lentil cultivar receiving single or dual inoculations of *Pseudomonas spp.* and *R. leguminosarum*-PR1 had significantly higher levels of shoot Fe compared to the *R. leguminosarum*-PR1 alone at 40 DAS. Further, Dashadi *et al.* (2011) ^[8] observed that mixed inoculation of faba bean with *Rhizobium / Azospirillum* and *Rhizobium / Azotobacter* combinations led to changes in total content of Fe. Selvakumar *et al.* (2012) ^[18] also reported co-inoculation of sorghum with *Azospirillum* and *Glomus* significantly increased Fe content.

Effect on Copper (Cu) content

The Cu content of seed and straw was found maximum in treatment T₇ receiving co-inoculation of *Rhizobium phaseoli* with *Pseudomonas striata* (53.72 and 43.93 mg kg⁻¹, respectively) which significantly superior over other treatments and followed by treatment T₄ (RDF + *Rhizobium phaseoli* + *Bacillus megaterium*) (53.61 and 43.49 mg kg⁻¹), T₅ (RDF + *Rhizobium phaseoli* + *Bacillus subtilis*) (51.57 an 41.87 mg kg⁻¹), T₆ (RDF + *Rhizobium phaseoli* + *Bacillus subtilis*) (51.57 an 41.87 mg kg⁻¹), T₆ (RDF + *Rhizobium phaseoli* + *Bacillus polymyxa*) (50.60 and 40.63 mg kg⁻¹), T₈ (RDF + *Rhizobium phaseoli* + *Azotobacter chroococcum*) (51.66 and 41.63 mg kg⁻¹) and T₁₀ (RDF + *Rhizobium phaseoli* + *Azospirillum lipoferum*) (50.47 and 40.38 mg kg⁻¹) (Table 3b.).

These findings corroborated with results of Dashadi *et al.* (2011)^[8] recorded that mixed inoculation of faba bean with *Rhizobium* and *Azospirillum* and *Rhizobium* and *Azotobacter* combinations led to changes in total content of Cu. Further, Selvakumar *et al.* (2012)^[18] reported co-inoculation of sorghum with *Azospirillum* and *Glomus* significantly enhances the Cu content of grain and straw.

Table 3b: Effect of co-inoculation of different bacterial cultures with Rhizobium phaseoli on micronutrient content (Cu and Mn) in black gram

Sr. No.	Treatment	Cu conten	t (mg kg ⁻¹)	Mn content (mg kg ⁻¹)		
Sr. No.		Seed	Straw	Seed	Straw	
T1	Absolute control	39.54	29.49	50.55	43.21	
T_2	Only RDF	41.79	31.61	52.89	44.25	
T3	RDF + Rhizobium phaseoli	47.71	37.71	55.63	45.21	
T_4	T ₃ + Bacillus megaterium	53.61	43.49	60.69	50.10	
T5	$T_3 + Bacillus subtilis$	51.57	41.87	58.61	49.96	
T ₆	T ₃ + Bacillus polymyxa	50.60	40.63	58.29	48.17	
T ₇	T ₃ + Pseudomonas striata	53.72	43.93	64.06	54.88	
T ₈	T ₃ + Pseudomonas flurescens	53.40	43.37	63.61	53.67	
T9	$T_3 + Azotobacter chroococcum$	51.66	41.63	58.66	48.66	
T ₁₀	T ₃ + Azospirillum lipoferum	50.47	40.38	56.38	49.74	
	S.Em.±	1.24	1.17	1.53	0.75	
	C.D. at 5 %	3.69	3.45	4.55	2.23	

Effect on Manganese (Mn) Content

The Mn content of seed and straw found maximum in treatment T_7 receiving co-inoculation of *Rhizobium phaseoli* with *Pseudomonas striata* (64.06 and 54.88 mg kg⁻¹, respectively) which significantly superior over other

treatments and treatments T_4 receiving co-inoculation of *Rhizobium phaseoli* with *Bacillus megaterium* (60.69 and 50.10 mg kg⁻¹, respectively) and T_8 having dual inoculation of *Rhizobium phaseoli* with *Pseudomonas flurescens* (63.61 and 53.67 mg kg⁻¹) found at par with T_7 (Table 3b.).

Our findings matched with the studies of Dashadi *et al.* (2011)^[8] that mixed inoculation of faba bean with *Rhizobium* and *Azospirillum* and *Rhizobium* and *Azotobacter* combinations led to changes in total content of Mn. Similarly, Kranthikumar *et al.* (2017)^[11] reported that content of Fe, Zn, Mn and kg⁻¹ in grain and 43.7 mg kg⁻¹ in straw) and Cu by soybean was found highest in treatment RDF+ *Rhizobium* + *Trichoderma viride*.

Effect on Micronutrient Uptake (Zn, Cu, Fe and Mn) Effect on Zinc (Zn) uptake

The Zn uptake by seed under treatment T_8 (46.43 g ha⁻¹) found maximum over rest of treatments and treatment T_4

(45.43 g ha⁻¹) and treatment T₇ (43.76 g ha⁻¹) showed at par values with treatment T₈. However, Zn uptake by straw and total uptake was found maximum in T₈ (87.29 and 131.05 g ha⁻¹ respectively) which significantly differed from other treatments and treatment T₄ (86.28 and 131.05 g ha⁻¹) and T₇ (83.91 and 130.34 g ha⁻¹) found at par with T₈. The lowest values for Zn content and uptake were observed in treatment T₁ (absolute control). Tiwari *et al.* (2018) ^[21] found that the maximum uptake of Zn (654.66 g ha⁻¹) in lentil in treatment receiving RDF + Seed inoculation with *Rhizobium* + PSB + 1.0 g ammonium molybdate kg⁻¹ seed.

Sr. No.	Treatment	Zn	uptake (g	; ha -1)	Fe uptake (g ha ⁻¹)		
Sr. No.	I reatment	Seed	Straw	Total	Seed	Straw	Total
T1	Absolute control	28.66	49.48	78.14	99.03	160.16	259.19
T2	Only RDF	30.77	57.53	88.30	106.48	185.61	292.09
T3	RDF + Rhizobium phaseoli	37.16	68.27	105.40	117.02	220.25	337.27
T_4	$T_3 + Bacillus megaterium$	45.43	86.28	131.05	148.33	285.53	433.86
T5	T ₃ + Bacillus subtilis	39.05	68.05	107.01	126.02	221.44	347.46
T ₆	T ₃ + Bacillus polymyxa	32.87	62.22	95.08	104.46	209.14	313.60
T7	T ₃ + Pseudomonas striata	46.43	83.91	130.34	147.74	270.49	418.22
T8	$T_3 + Pseudomonas flurescens$	43.76	87.29	131.72	135.15	279.69	414.84
T9	$T_3 + Azotobacter chroococcum$	31.82	66.53	98.35	107.28	214.69	321.97
T10	T ₃ + Azospirillum lipoferum	36.84	68.65	105.49	114.98	218.30	333.28
	S.Em.±	1.19	2.80	3.39	4.80	8.69	12.30
	C.D. at 5 %	3.54	8.31	10.06	14.26	25.81	36.53

Effect on Ferrous (Fe) Uptake

In case of Fe uptake i.e. by seed, straw and total was found maximum in T₄ having co-inoculation of *Rhizobium phaseoli* with *Bacillus megaterium* (148.33, 285.53 and 433.86 g ha⁻¹) which significantly differed from other treatments and treatment T₇ (147.74, 270.49 and 418.22 g ha⁻¹) and T₈ (135.15, 279.69 and 414.84 g ha⁻¹) found at par with T₄. The lowest value observed in treatment T₁ (absolute control).

Effect on Copper (Cu) uptake

The Cu uptake by seed, straw and total in black gram was found maximum in T_4 (34.16, 61.24 and 95.41 g ha⁻¹) which significantly differed from other treatments and treatment T_7 (32.98, 57.62 and 90.60 g ha⁻¹ respectively) and T_8 (32.19, 60.09 and 92.28 g ha⁻¹ respectively) found at par with T_4 . The lowest values of content and uptake observed in treatment T_1 (absolute control) (Table 4b).

Table 4b: Effect of co-inoculation of different bacterial cultures with Rhizobium phaseoli on micronutrient uptake (Cu and	d Mn) in black gram
--	---------------------

Sr. No.	Treatment	Cuu	ıptake (g	ha ⁻¹)	Mn uptake (g ha ⁻¹)		
Sr. No.	Treatment	Seed	Seed	Total	Seed	Straw	Total
T1	Absolute control	50.55	50.55	47.17	24.68	41.25	65.93
T ₂	Only RDF	52.89	52.89	54.76	27.42	47.04	74.46
T ₃	RDF + Rhizobium phaseoli	55.63	55.63	73.73	31.80	57.44	89.24
T4	$T_3 + Bacillus megaterium$	60.69	60.69	95.41	38.62	70.32	108.94
T5	T ₃ + Bacillus subtilis	58.61	58.61	77.83	33.72	58.04	91.76
T ₆	T ₃ + Bacillus polymyxa	58.29	58.29	69.63	28.85	52.77	81.62
T ₇	T ₃ + Pseudomonas striata	64.06	64.06	90.60	39.29	70.48	109.77
T8	T ₃ + Pseudomonas flurescens	63.61	63.61	92.28	38.31	74.25	112.55
T9	$T_3 + Azotobacter chroococcum$	58.66	58.66	72.19	29.27	54.26	83.53
T10	T ₃ + Azospirillum lipoferum	56.38	56.38	73.59	31.02	56.47	87.49
	S.Em.±	1.53	1.53	3.66	1.42	2.04	2.92
	C.D. at 5 %	4.55	4.55	10.89	4.22	6.07	8.67

Effect on Manganese (Mn) Uptake

The Mn uptake by seed was recorded maximum under the influence of treatment T_7 (39.29 mg kg⁻¹) and treatment T_4 (38.62 mg kg⁻¹) and T_8 (38.31 mg kg⁻¹) found at par with treatment T_7 but in case of straw and total Mn uptake treatment T_8 (74.25 and 112.55 g ha⁻¹) found significantly superior at 5 per cent level of significance over other treatments and treatment T_4 (70.32 and 108.94 g ha⁻¹) and T_8 (70.48 and 109.77 g ha⁻¹) found at par with T_8 . The lowest value observed in treatment T_1 (absolute control) (Table 4b).

In case of nutrient uptake of Fe (1102 g ha⁻¹), Zn (196.6 g ha⁻¹), Mn (266.6 g ha⁻¹) and Cu (133.9 g ha⁻¹) the treatment receiving RDF+ *Rhizobium* + *Trichoderma viride*. showed the significant result over the other (Kranthikumar *et al.* 2017) ^[11]. Various mechanisms have been suggested to explain the phenomenon of plant growth promotion. These include increase in the nitrogen fixation, solubilization of phosphorus, increase in availability of nitrate, extra cellular production of antibiotics, lytic enzyme, hydrocyanic acid, increase in root permeability, strict competition for the available and root sites, suppression of deleterious rhizobacteria and

enhancement in the uptake of essential plant nutrients (Selvakumar *et al.* 2012)^[18].

Conclusions

The content and uptake of nitrogen, phosphorus and potassium in black gram was found to be enhanced significantly by co-inoculation with *Pseudomonas striata*. The data shows that the values of nutrient content and their uptake found strongly at par with RDF + *Rhizobium phaseoli* + *Pseudomonas striata* and RDF + *Rhizobium phaseoli* + *Pseudomonas flurescens* over rest of the treatments. The content and uptake of zinc, iron, copper and manganese in black gram was found to be enhanced significantly with seed co-inoculation with *Pseudomonas striata*. The data shows increase in nutrient content and their uptake by black gram with RDF + *Rhizobium phaseoli* + *Pseudomonas striata* over rest of the treatments.

References

- 1. Allan JE. The determination of copper by atomic absorption spectrophotometry. Spectrochim. Acta. 1961a; 17:459-466.
- 2. Allan JE. The use of organic solvents in atomic absorption spectrophotometry. Spectrochim. Acta. 1961b; 17:467-473.
- 3. Amule FC, Rawat AK, Rao DLN. Co-inoculation response of *Rhizobium* and PGPR on soybean and chickpea. International Journal of Chemical Studies. 2017; 5(6):2094-2102.
- 4. Anonymous. Pulses in India Retrospect & Prospects, Government of India, Ministry of Agriculture and Farmers Welfare (Department of Agriculture, Cooperation and Farmers Welfare), Directorate of Pulses Development, Vindhyachal Bhavan, Bhopal, 2018.
- AOAC. Official Method of Analysis, Ed.12, Association of Official Analytical Chemists, Washington, D.C, 1993.
- 6. Badawi FShF, Biomy AMM, Desoky AH. Peanut plant growth and yield as influenced by co-inoculation with *Bradyrhizobium* and some rhizo-microorganisms under sandy loam soil conditions. Annals of Agricultural Science. 2011; 56:17-25.
- Bhargava BS, Raghupati HB. Analysis of Plant Materials for Macro and Micronutrients in: Methods of Analysis of Soils, Plants, Waters and Fertilizer, Tondon HLS (Ed.) Fertilizer Development and Consultation Organization, New Delhi, 2001, 48-81.
- Dashadi M, Khosravi H, Moezzi A, Nadian H, Heidari M, Radjabi R. Co-inoculation of *Rhizobium* and *Azotobacter* on growth indices of faba bean under water stress in the greenhouse condition. Advanced Studies in Biology. 2011; 3(8):373-385.
- Elangaimannan R, Anbuselvam Y, Karthikeyan P. Genetic diversity in black gram [*Vigna mungo* (L.) Hepper]. Legume Research. 2008; 31(1):57-59.
- Jackson ML. Soil Chemical Analysis. Prentice Hall of India (Pvt.) Ltd., New Delhi, 1973; 38-214.
- Kranthikumar B, Ismail Syed, Manasa K, Pawar A. Effect of phosphorus and zinc solubilizing acidifiers on content and uptake of micro nutrients in summer Soybean. International Journal of Current Microbiology and Applied Sciences. 2017; 6(6):2784-2791.
- 12. Mir AH, Lal SB, Salmani M, Abid M, Khan I. Growth, yield and nutrient content of black gram (*Vigna mungo*) as influenced by Levels of phosphorus, sulphur and

phosphorus solubilizing bacteria. SAARC Journal of Agriculture. 2013; 11(1):1-6.

- Mishra PK, Bisht SC, Ruwari P, Joshi GK, Singh G, Bisht JK, et al. Bioassociative effect of cold tolerant *Pseudomonas spp.* and *Rhizobium leguminosarum*-PR1 on iron acquisition, nutrient uptake and growth of lentil (*Lens culinaris*). European Journal of Soil Biology. 2011; 47:35-43.
- 14. Panse VG, Sukhatme PV. Statistical Methods for Agricultural Workers, Indian Council of Agricultural Research, New Delhi, 1967.
- 15. Patil GB, Lakshman HC, Mirdhe RM, Agadi BS. Effect of co-inoculation of AM fungi and two beneficial microorganisms on growth and nutrient uptake of Finger millet (*Eleusine coracana*). Asian Journal of Plant Science and Research. 2013; 3(1):26-30.
- 16. Piper CS. Soil and Plant Analysis. Hans Publishers, Bombay, 1966.
- Qureshi MA, Shakir MA, Iqbal A, Akhtar N, Khan A. Co-inoculation of phosphate solubilizing bacteria and rhizobia for improving growth and yield of mungbean (*Vigna radiata* L.) The Journal of Animal & Plant Sciences. 2011; 21(3):491-497.
- Selvakumar G, Reetha S, Thamizhiniyan P. Response of biofertilizers on growth, yield attributes and associated protein profiling changes of black gram (*Vigna mungo* L. Hepper). World Applied Sciences Journal. 2012; 16(10): 1368-1374.
- 19. Singh G, Choudhary P, Meena BL, Rawat RV, Jat BL. Integrated nutrient management in black gram under rainfed condition. International Journal of Recent Scientific Research. 2016; **7**(10):13875-13894.
- 20. Singh SR, Najar GR, Singh U. Productivity and nutrient uptake of Soybean (*Glycine max*) as influenced by bio-inoculants and FYM under rainfed conditions. Indian Journal of Agronomy. 2007; 52(4):325-329.
- Tiwari AK, Ved Prakash, Ahmad A, Singh RP. Effect of biofertilizers and micronutrients on nutrient uptake, growth, yield and yield attributes of lentil (*Lens culinaris* L.). International Journal of Current Microbiology and Applied Sciences. 2018; 7(2):3269-3275.
- 22. Verma JP, Yadav J, Tiwari KN. Application of *Rhizobium sp*.BHURC01 and plant growth promoting rhizobacteriaon nodulation, plant biomass and yields of chickpea (*Cicer arietinum* L.). International Journal of Agricultural Research. 2010; 5(3):148-156.
- 23. Yadav K, Kumar S, Mondal K, Kumar A. Response of urdbean to combined inoculation with *Rhizobium*, PSB and PGPR in calcareous soil. Rajasthan Agricultural University Journal Research. 2008; 18:69-74.