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Abstract 

Bisphenol A (BPA) is an organic synthetic compound, abundantly used worldwide for the production of 

polycarbonate plastic and epoxy resins. It is an endocrine disruptor that can mimic estradiol by binding to 

and activating the same estrogen receptor as the natural hormone. It is not only hazardous to human 

population but also found to be acutely toxic to aquatic organisms in the range 1000–10,000μg/L for 

freshwater and marine species. In 2010, the U.S. Environmental Protection Agency reported that over 

one million pounds of BPA are released into the environment annually. BPA can enter the environment 

either directly from chemical, plastics, coat and staining manufacturers, from paper or material recycling 

companies, or indirectly leaching from plastic, paper and metal waste in landfills or ocean-borne plastic 

trash. BPA in anaerobic or semi aerobic sediment environments can persist for a prolonged period of 

time, leading to higher BPA levels in sediments than in surface water. Interestingly BPA can persist 

longer in seawater than in fresh water without any degradation (about 30 day) and the possibility of BPA 

contamination is higher marine than freshwater organisms. BPA possess endocrine disruption in different 

types of fishes by vitellogenin induction, upregulation of brain aromatase isoform mRNA, reduction of 

total sperm counts and induction of testis ova and poor somatic growth of male. It was also observed that 

environmentally relevant low level of BPA increased the expression of genes related to reproduction axis 

such as kiss1, kiss1r, Gnrh3, LH β, FSHβ, and ERα and dmrt1. BPA is also assumed to involve THR, in 

increasing the rate of early embryonic development in several fish species. Further, BPA exhibit very 

high estrogenic activity on the cyp19a1b gene, and increase concentration of vitellogenin in swim-up fry 

of freshwater fish species. Keeping in view of these, the present study is aimed to elucidate a baseline 

information about contamination routes of BPA in the aquatic environment and its endocrine-disruptive 

effects on aquatic organisms. 
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1. Introduction 

Bisphenol A (BPA) is an anthropogenic organic compound, tremendously used as a monomer 

for the production of polycarbonate plastic and epoxy resins (Staples et al., 1998) [37]. It is used 

for the production of transparent plastic bottles, plastic toys and a constituent of dental sealant 

(Suzuki et al., 2000) [40]. With the constant demand for plastic products, the worldwide 

production of BPA has also increased in many folds. Out of all the xenobiotic compound 

registered for human use purpose by Environmental protection act, BPA (CAS Registry No. 

80-05-7) has earned the highest amount of interest as well as controversy during the last 

decade (Crain et al., 2007) [6]. It is a xenoestrogen compound and mimics the structure of 

estrogen hence it is considered as a potential endocrine disrupter (Goodman et al., 2006) [13]. 

BPA has increased human health concern to a large extent, due to its ubiquitous existence in 

the environment (Huang et al., 2012) [17]. This compound is detected in the urine of 95% of 

adults in the USA and Asia (Calafat et al., 2005; Zhang et al., 2011) [3, 48]. Discouraging the use 

of BPA, now-a-days some regulatory bodies such as the European Commission, the US Food 

and Drug Administration, have banned the use of BPA in baby bottles (Qiu, 2016) [32]. BPA is 

found to be acutely toxic to aquatic organisms in the range 1000–10,000μg/L for freshwater 

and marine species (Alexander et al., 1988). In fishes, BPA exposure can lead to detrimental 

effect particularly during ontogenesis period (Crain et al., 2007) [6]. Its concentration is lower 

in stream water (max upto 21 mg/L) (Staples et al., 2002) [38], but it can reach concentrations as 

high as 17,200 mg/L in landfill leachates (Alexander et al., 1998).  
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2. Mode of contamination in aquatic ecosystem 

Generally, the lower concentration of BPA found to be 

present in domestic sewage effluent than industrial sewage 

effluent (Fuerhacker et al., 2000) [11]. It has been observed that 

wastewaters from paper plants contain very high 

concentration of BPA, therefore, complete removal of BPA 

from the effluents of the plastic and paper production plant is 

not feasible (Rigol et al., 2002; Quinn et al., 2003) [34, 32]. 

Furhacker et al. (2000) claimed that during wastewater 

treatment more than 90% of BPA concentration can be 

curtailed. However, several other studies suggested that the 

elimination rate of BPA in treatment plants varies from 37 to 

94% (Lee and Peart, 2000; Fuerhacker et al., 2003) [29, 11].  

Landfill leachates are the major point source of BPA 

contamination. By the hydrolysis of plastic in landfill 

leachates, BPA is released. Therefore, a very high 

concentration of BPA was reported from waste landfill 

leachates ranging from 1.3 to 17,200 μg/L with an average of 

269 μg/L (Yamamoto et al., 2001) [46]. On note, the level of 

BPA in effluent is considerably lower than the leachates. As 

an instance, Yamada et al. (1999) [45] commented that the 

levels of BPA in four landfill leachates ranged from 15 to 

5400 μg/L, whereas it ranged from 0.5 to 5.1 μg/L in the 

treated effluents. Its already proclaimed that marine debris 

washed ashore contain 60-80% plastic in volume, increasing 

the risk of further contamination of such anthropogenic 

chemicals into aquatic environment. Although in microbe-rich 

aerobic environment BPA degrades easily, it further creates a 

non-point source of contamination threat to the water body 

(Dorn et al., 1987) [7]. Crain et al, (2007) [6] stated that the 

comparatively lesser concentration of BPA found in stream 

waters (21µg/L) than that of the BPA concentration of landfill 

leachates (17 mg/ L). However, the river surface water 

contains very low concentration of BPA than that of the 

sediments (Kang, 2007) [22]. 

3. Fate of BPA in the aquatic environment  

Photodegradation and biodegradation are two potential 

phenomena responsible for the degradation of this potential 

toxicant in the aquatic ecosystem. Photodegradation is the 

primary non-biological pathway responsible for the 

degradation of BPA in an aquatic environment. Chin et al., 

(2004) [5] reported that dry organic matter such as humic acid 

and fluvic acid found in the surface water helps in absorbing 

the irradiation thus generating reactive oxidant species (ROS) 

and some non-ROS intermediates. Since iron can yield ROS 

by reacting with hydrogen peroxides, complexes of iron with 

ROS or dry organic matter, for instance, Fe(III)-OH and 

Fe(III)-humic acid complexes, has found to impel further 

photodegradation of BPA (Zhou et al., 2004) [49]. However, 

biodegradation is a more potential phenomenon prevailing in 

the aquatic ecosystem for degradation of BPA. According to 

Kang and Kondo. (2002) [20], several bacteria species are 

responsible for degrading BPA in an aquatic environment and 

shortening its half-life to less than 5 days. Kang and Kondo, 

(2002) [20] stated that the efficiency of bacterial degradation 

can vary from (18-91%) depending on the bacterial species, 

however, two bacterial species such as (Pseudomonas strain 

and streptomyces species strain) has been isolated from river 

water with high BPA biodegradability (more than 90% over 

10 days). The extent of biodegradation is mainly dependent 

upon bacterial population and abiotic factors such as 

temperature and oxygen. According to Kang and Kondo 

(2002a) [21]. BPA in river samples was found to be readily 

biodegraded under aerobic conditions (>90%), while in 

anaerobic conditions even after 10 days period no 

depreciation of BPA level was found. Along with the bacteria 

several planktons are reported for having the capacity for 

biodegradation and removal of estrogenic activity of BPA 

such as Chlorellafuscavar vacuolate (Hirooka et al., 2005) [15].

 
Table 1: Endocrine disruption effect of BPA in different fish 

 

Species BPA exposure period Endocrine-disrupting effect Reference 

Gold fish (Carassius auratus) 1 µmol for 8 day Vitellogenin induction Suzuki et al. (2003) [40] 

Sword tail (Xiphophorus helleri) 
2000 µg/l for 3 day 

2000 µg/l for 60 days 

Vitellogenin mRNA expression 

Induction of apoptosis in Fish testis cell 
Kwak et al. (2001) [24] 

Fathead minnow (pimephales 

pomelas) 
119-205 µg/l for 71 days Vitellogenin induction Sohoni et al. (2001) [36] 

Zebra fish (Danio rerio) 

Rainbow trout (Onchorynchus 

mykiss) 

1000 µmol for 3 weeks Vitellogenin induction 
Van den Belt et al. 

(2003) 

Guppies 

(Poecilia reticulata) 

274 and 579 µg/l 

 
Reduction of total sperm count 

Haubruge et al. (2000) 

[14] 

Brown trout 
2.4 µg/l and 5 µg/l 

for two weeks 

Delayed ovulation at 2.4 µg/l and elimination of 

ovulation at 5 microgram/l 

Lahnsteiner et al. 

(2005) [27] 

Medaka 

(Oryzias latipes) 
1820 µg/l for 60 days 

Induction of testis –ova and poor somatic growth of 

male 
Yokota et al. (2000) [47] 

Catla (Catla catla) 
10, 100 and 1000 µg/l for 

2 weeks 

Increase in serum stress biomarker responses such 

as AST and ALT in all the concentrations. 

Concentration independent increase in serum 

creatinine level resulting kidney dysfunction 

Only 1000 µg/l induced significant vitellogenin 

expression 

Faheem et al. (2019) [9] 

Medaka 
10 µg/l for 100 day after 

hatch 
Induction of testes ova 

Metcalfe et al. (2001) 
[10] 

Sword tail 

2 mg/l and 10 mg/l for 

short term (3 day) and long 

term (6 day) 

Short term exposure induced vitellogenin mRNA 

expression 

And long-term exposure affected the growth 

Kwak et al. (2001) [25] 

Medaka 837-3120 µg/l for 3 weeks Induction of testes ova Kang et al. (2002) [21] 

Medaka 1000 µg/l for 5 weeks vitellogenin induction Tabeta et al. (2004) [41] 

zebrafish 5 and 50 µg/l for 21 days 
Adverse effect on F1 generation 

GSI and egg production decreased 
Ji et al. (2013) [18] 
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Delayed hatching and decrease in hatching rate 

Medaka 
10 µg/l 

 
Reduction in number of eggs and hatching Shioda et al. (2000) [35] 

Turbot 

(Scopthalmus maximus) 
59 µg/l for 3 weeks Reduction of testosterone and 11-keto testo sterone, 

Labadie and 

Budzinski, 2006 [26] 

Zebra fish 
10 µg/l for 72 hrs after 

fertilization 
Brain aromatase isoform (p450 aromB) mRNA 

Kishida et al. (2001) 

[23] 

 

4. Mechanism of action 

It was observed that environmentally relevant low level of 

BPA, affects the HPG axis and upregulates the expression of 

genes associated with reproduction axis such as kiss1, kiss1r, 

GnRH3, LHα, FSHβ and ERα (Qui et al., 2015) and reduces 

expression of gene dmrt1 in male fish, which gene is 

responsible for male sex determination (Laing et al., 2016) [28]. 

kiss1 is considered as the upstream regulator of GnRH 

neurons and it is observed that by exposure of BPA the kiss1 

gene expression is upregulated along with the GnRH levels 

(Elizur, 2019) [8]. These cyp19a and cyp19b genes encode the 

cyt p-450 aromatase enzyme, which enzyme is responsible for 

the conversion of testosterone to estradiol and In various 

studies it has been reported that in BPA exposed fish, the 

upregulation of cyp19a (ovarian type) and cyp19b (brain type) 

genes has been seen (Sohoni et al., 2001; Lee et al., 2006) [36]. 

This synthetic xenoestrogen is further reported to interfere 

with the normal oestrogen signalling pathway by upregulating 

the expression of both ERα and ERβ in fishes (Qui et al., 

2016). Along with that, it has been reported that BPA 

exposure also escalates FSH and LH hormone concentration 

in fish (Qui et al., 2016). FSH and LH possess critical roles in 

Gonadal development of different teleost fishes (Prat et al., 

1996) [31]. Not only BPA interferes with the hormones of the 

Hypothalamic-Pituitary-Gonadal axis, but also it alters the 

thyroid hormone function during the period of ontogenesis. It 

is observed that BPA hasten up the embryonic development 

of fishes by acting as a thyroid hormone antagonistic (Castro 

et al., 2013) [4]. It is also reported that even at environmentally 

relevant concentration BPA down-regulates the expression of 

the dmnt1 which is involved in DNA methylation during 

ontogenesis, indicating the epigenetic action of this chemical 

(Laing et al., 2016) [28]. So, there by upregulating and 

downregulating so many different genes, BPA causes the 

endocrine disruption of fishes.  

 

 
 

Fig 1: Model for the pathway of vitellogenesis regulation in teleost fish via the brain-pituitary-gonad (BPG) axis (Sullivan and yilmaz, 2018). 

 

5. Metabolism and Bioaccumulation potential of BPA in 

fish 

Detoxification of xenobiotic compounds in the fish body is 

dependent on UGT which a critical enzyme essential for this 

process (Tephly and Burchell, 1990) [42]. Basically in BPA 

exposed fishes, two types of BPA metabolites such as BPA 

sulfate and BPA glucuronide were identified, bt the later one 

is considered as a major metabolite as it the concentration of 

the later one in plasma is reported to be 100- 22600 times 

higher than the former one (Lindholst et al., 2003) [30]. 

Detoxification process is also linked with the bioaccumulation 

process. It is reported that when the detoxification pathway is 

saturated, excessive BPA leads to bioaccumulation (Upmeier 

et al., 2000) [43]. Kang (2007) [21] stated that the 

bioaccumulation factor in freshwater fish can range from 5 to 

68. However, during the initial phases of the life cycle, the 

fishes are more prone to higher bioaccumulation threat 

(Honkanen et al., 2004) [16]. Although is reported that sea food 
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of supermarket is reported to be containing a potentially 

threatening amount of BPA with a range of (13-213 µg/ kg 

wet weight), indicating the higher bioaccumulation potential 

of BPA in the marine organisms (Basheer et al., 2004) [2]. This 

might be probably due to the reason that the persistence 

period of undegraded BPA in marine water can be as high as 

30 days unlike the freshwater (Kang, 2007) [21]. 

 

6. Conclusion and future research prospects 

The anthropogenic endocrine disruptive chemical BPA is 

used abundantly in the plastic production industry. Although a 

lot of different alternatives were tried and tested, nothing can 

be considered as the safe alternative of BPA as all the 

alternatives are having endocrine disruptive effect to various 

extents. Further, the bioaccumulation potential of BPA varies 

from species to species and this bioaccumulation elicits higher 

endocrine disruptive effect in fishes and organisms. 

Interestingly, very few existing literatures explained the effect 

of bioaccumulation in the endocrine system. Also, most of the 

studies have been conducted using BPA concentration not in 

relevance to the range of environmentally available 

concentration. Further, a research gap exists in regards to the 

effect of BPA in organisms of the marine environment, as 

most of the study models are based on freshwater organisms. 

Future studies can be directed keeping in view for the 

production of a safer alternative of BPA and more detailed 

study should take place for marine fishes keeping in view, the 

environmentally relevant concentration and the 

bioaccumulation effects. 
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