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Abstract 

A study was conducted to interpolate and to explore the analysis of spatial variability of major soil 

nutrients in Basaltic Terrain of Bemetara district, Chhattisgarh. A total of 182 soil samples (0-25 cm) 

were collected randomly using GPS. Soil chemical properties i.e. available nutrients (N, P and K) were 

measured in laboratory. Data were interpolated by Ordinary Kriging (Spherical, Circular, and Gaussian). 

The performance of methods was evaluated using Mean Absolute Error (MAE), Root Mean Square Error 

(RMSE) and Goodness of prediction (G) obtained from a cross-validation procedure. The results showed 

that Circular, spherical, and Gaussian models were found best fit for available N, P, and K, respectively. 

All variables showed strong spatial dependence. Cross validation of kriged map showed that spatial 

prediction of soil nutrients using semi variogram parameters is better than assuming mean of observed 

value for any unsample location. Therefore it is a suitable alternative method for accurate estimation of 

soil properties in unsampled positions as compared to direct measurement which has time and costs 

concerned. 
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Introduction 

Soil is a dynamic natural body which is characterized by high degree of spatial variability due 

to combined effect of physical, chemical or biological processes that operate with different 

intensities at different scales (Goovaerts, 1998) [5]. Reports have shown that there is large 

variability in soil properties, crop yield, disease, weed etc., not only in large-sized fields 

(Godwin and Miller, 2003) [4], but also in small-sized fields (Bhattacharyya et al., 2008) [1]. 

Soil macronutrients are essential to plants growth; maintain ecosystem and high crop yields. 

However, imbalance fertilization, deteriorate the precious soil environment particularly N and 

P can be potentially hazardous to water resources when their available components in soils are 

excessive, because available macronutrients can be transported off site in runoff due to rain or 

irrigation (Smith et al., 1998; Phupaibul et al., 2004) [16, 23] and subsequently degrades the 

fertility of soil and reduced the productivity. Several studies have documented that soil 

properties vary across agricultural fields, causing spatial variability in crop yields. Information 

on soil properties in crop field is very important and useful for fertilizer requirement and also 

to the specific management of the crop and soil. Understanding the distribution of soil 

properties in the field is important in refining agricultural management practices (McBratney 

and Pringle, 1999) [13] while minimizing environmental damage. Soil variability can be due to 

many processes acting and interacting across a continuum of spatial and temporal scales and is 

inherently scale dependant (Trangmar et al., 1985) [18]. Knowledge of soil spatial variability 

and the relationships among soil properties is important for evaluating agricultural land 

management practices (Huang et al., 1999) [7]. Among statistical methods, geo-statistical 

kriging-based techniques have been often used for spatial analysis (Deutsch, 2002) [3]. Spatial 

interpolation is therefore commonly used to generate soil property maps from discrete point-

based data (Schloeder et al., 2001) [15]. Robinson and Metternicht, 2006 tested the performance 

of spatial interpolation techniques (normal kriging and log normal kriging) for mapping soil 

properties and obtained acceptable results. 

In the last two decades, the application of geo-statistical methods by soil scientists focused on 

predicting spatial variability of soil properties with different kriging methods over small to  
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large spatial scale (Tsegaye and Hill, 1998; Lark, 2002) [19, ]. 

Traditional mapping method of soil parameters is of little help 

when the uncertainty associated to the estimated values at 

unsampled locations is required to support decision making. 

The geo-statistical methods consider the spatio-temporal 

variation of soil properties as a random process depending on 

both time and space (Goovaerts, 1999) [6]. Kriging is a geo-

statistical interpolation technique that uses statistical 

properties of measured points for interpolation at unsampled 

locations (Isaacs and Srivastava, 1989) [8] and performance 

can be significantly affected by variability, spatial structure of 

data (Leenaers et al., 1990) and by the choice of variogram 

models.  

Geographic information systems (GIS), as new technology, 

for improving sampling design by utilizing the spatial 

dependence of soil properties within a sampling region and 

useful to illustrate the spatial interrelationship of soil data 

which reduces error, biasness and increase the accuracy of 

data for interpolation (Oliver, 1987). Characterization of soil 

spatial variability would be a key step towards development 

of site specific technology that will help the farmers to select 

the most appropriate soil and water management practices to 

optimize crop production across the field (Vieira and 

Gonzalez, 2003) [21]. The most important way to achieve the 

aforesaid target is to prepare soil maps through spatial 

interpolation of point-based measurements of soil properties 

after deriving the structure of spatial variation (Santra et al., 

2008) [14]. Therefore, their proper management is necessary to 

avoid deteriorating the environment while meeting the 

requirement of high crop productivity and farmer must be 

advised to use balanced fertilizers/manures, special soil 

amendment (if any) and accordingly adopt suitable cropping 

pattern. Hence it is necessary to evaluate the fertility status of 

the soil and promote the recommendations of soil test for 

balanced nutrition to maintain soil health. The information on 

spatial variability of soil properties at village or watershed 

level, particularly, in soils of basaltic terrain is meager. 

Therefore, the present study has been planned to assess the 

accuracy of geospatial techniques and to quantify the spatial 

variability of soil macronutrients in Miniwada Panchayat, 

Katol tehsil of Nagpur district of Maharashtra. 

 

Materials and Methods 

Study area 

Bemetara block belongs to Bemetara district of Chhattisgarh 

and is located in the centre of Mahanadi basin. 

Geographically, it is located between 210 58’ to 220 00’ N 

latitude and 810 28’ to 810 32’ E, covering an area of2841.65 

ha (Fig 1) .The study area is part of the Mahanadi Basin 

which is the 8thlargest basin in the country with a catchment 

area of 139681.51 sq. km between 80° 30' to 86° 50' E 

longitude and 19° 21' to 23° 35'N latitude covering the states 

of Chhattisgarh and Odisha and comparatively smaller spread 

in Jharkhand, Maharashtra and Madhya Pradesh 

 

Soil sample collection and analysis 

Soil samples were collected grid wise at random with the help 

of Global Positioning System (GPS). A total of 182 soil 

samples were collected from the plough layer (0-25 cm) 

covering the entire study area. Available nitrogen (Subbiah 

and Asija, 1956) [17], available phosphorus (Olsen et al., 1954) 

and available potassium (Hanway and Heidel, 1952) were 

determined by using standard procedures (Kumar et al., 2018) 

[9]. 

 

 
 

Fig 1: Location map of the study area 

 

Geostatistical analysis of Soil properties 

In general, geostatistical methods were used to estimate and 

map soil properties. It is based on the theory of recognized 

variables which was used to investigate the soil spatial 

variability. It is expressed by a Semivariogram which 

measures, the average dissimilarity between data separated by 

a vector h it is computed as half the average squared 

difference between the components of data pairs: 

 

𝛾(ℎ) = 1

2𝑁(ℎ)
∑ [𝑧(𝑥𝑖)

𝑁(ℎ)
𝑖=1 − 𝑧(𝑥𝑖 + ℎ)]   (1) 

 

Where, N(h) is the number of data pairs within a given class 

of distance and direction, z(xi) is the value of the variable at 

the location xi and z(xi+h) is the value of the variable at a lag 

of h from the location xi. 

Experimental semivariogram value for each property was 

computed using ArcGIS 10.2.2. During pair calculation, 

maximum lag distance was taken half of the minimum extent 

of sampling area to minimize the border effect. Using the 

semivariogram model, basic spatial parameters such as nugget 

(C0), partial sill (C+ C0) and range (m) was calculated. Nugget 

is the variance at zero distance, partial sill is the lag distance 

between measurements at which one value for a variable does 

not influence neighboring values and range is the distance at 

which values of one variable become spatially independent of 

another (Lopez-Granadoz et al., 2002) [11]. Three commonly 

used semivariogram models were fitted for soil 

macronutrients (N, P and K). These are the Spherical, 

Exponential and Gaussian model. Expressions for different 

semivariogram models are below: 

 

Spherical model: 

 

𝛾(ℎ) = 𝐶𝑜 +  𝐶[1.5ℎ

𝑎
 - 0.5(ℎ

𝑎
)3], if 0 ≤ h ≤ a,   (2) 

= 𝐶𝑜 +  𝐶, otherwise 

 

Exponential model: 

 

𝛾(ℎ) = 𝐶𝑜 +  𝐶[1 − exp{ℎ

𝑎
}] for h ≥ 0   (3) 
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Gaussian model: 

 

𝛾(ℎ) = 𝐶𝑜 +  𝐶[1 − exp{−ℎ2

𝑎2 }] for h ≥ 0   (4) 

 

In all these models, nugget, sill and range were expressed by 

Co, (C+ Co) and m, respectively. From spatial data on soil 

properties corresponding point feature file was prepared in 

ArcGIS. ArcGIS geo-statistical analyst extension was used to 

carry out exploratory variogram analysis and then extend this 

exploratory approach to spatial interpolation by way of 

kriging. Geo-statistical analysis consisting of variogram 

calculation, kriging, cross-validation and mapping was 

performed using the geo-statistical analyst extension of 

ArcGIS 10.2.2. 

 

Sensitivity analysis 

Accuracy of model was done by comparing the deviation of 

estimates from the measured data and performing a cross-

validation test over the dataset. The best model was selected 

based on four criteria: the standardized mean nearest to zero, 

the smallest Root-Mean-Squared prediction Error (RMSE), 

the average standard error nearest the root-mean-squared 

prediction error and the standardized root-mean-squared 

prediction error nearest one were selected for each soil 

nutrient. The performance of interpolation techniques, in 

terms of the accuracy of predictions, was based on the 

comparison of the measure of accuracy, namely the Mean-

Squared Error (MSE) and on one measure of effectiveness, 

namely the Goodness of Prediction Estimate (G). The G gives 

an indication of how effective a prediction might be. The 

expressions for Mean Absolute Error (MAE), Mean Square 

Error (MSE) and Goodness of prediction (G) are given below: 

MAE is a measure of the sum of the residuals (e.g. predicted 

minus observed) (Voltz and Webster, 1990) [20]. 

 

𝑀𝐴𝐸 =
1

𝑁
∑ [𝑧(𝑥𝑖) − 𝒛(𝑥𝑖)]𝑁

𝑖=1     (5) 

 

Where, 𝒛(𝑥𝑖) is the predicted value at location. Small MAE 

values indicate few errors. The MAE measure, however, does 

not reveal the magnitude of error that might occur at any point 

and hence MSE was calculated. 

 

𝑀𝑆𝐸 =
1

𝑁
∑ [𝑧(𝑥𝑖) − 𝒛(𝑥𝑖)]2𝑁

𝑖=1     (6) 

 

Squaring the difference at any point gives an indication of the 

magnitude, e.g. small MSE values indicate more accurate 

estimation, point-by-point. The G measure gives an indication 

of how effective a prediction might be relative to that which 

could have been derived from using the sample mean alone 

(Schloeder et al., 2001) [15]. 

 

𝐺 = (1 −
∑ [𝑧(𝑥𝑖)−𝒛(𝑥𝑖)]2𝑁

𝑖=1

∑ [𝑧(𝑥𝑖)−M]2𝑁
𝑖=1

) x 100    (7) 

 

Where, M is the sample mean. If G= 100, it indicates perfect 

prediction, while negative values indicate that the predictions 

are less reliable than using sample mean as the predictors. The 

comparison of performance between interpolations was 

achieved by using mean absolute error (MAE). 

The spatial dependency of soil properties was graded based 

on the nugget variance effect. The ratio of nugget variance to 

sill expressed in percentages (C0 / C+ C0) can be regarded as 

criterion for classifying the spatial dependence of the soil 

parameters. If the ratio is equal or less than 25%, then the 

variable has strong spatial dependence, if it is between 25 and 

75% considered as moderate spatial dependence, and the 

values equal or greater than 75% have weak spatial 

dependence (Cambardella et al., 1994) [2]. 

 

Data analysis 

Statistical results indicated that the soil macronutrients were 

normally distributed. Data sets were analyzed and maps were 

produced with GIS software ArcGIS and its extension of 

Spatial Analyst.  

 

Results and Discussion 

Distribution of soil fertility parameter 

Before modelling the spatial distribution of any fertility 

property, the data is needed to be checked for normal 

distribution and the non-normal distributed parameters to be 

log transformed (Kumar and Sinha, 2018) [9]. The histograms 

of the soil fertility parameters are shown in figure 2. It shows 

that, the nitrogen and potassium were normally distributed. 

The same may be confirmed with the Shapiro-Wilk normality 

test (table 1). The parameter with non-normal distribution 

(phosphorous) was log-transformed before spatial modelling. 

 
Table 1: Normality test for the soil fertility parameters using 

Shapiro-Wilk test 
 

Fertility Parameter W P-value Normal/ Non-normal 

Nitrogen 0.98543 0.2114  

Phosphorous 0.94296 1.137e-06  

Potassium 0.97994 0.05562  

 

 
 

Fig 2: Histogram of the soil macronutrients 
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Descriptive statistics of soil parameters 

The descriptive statistics of soil parameters are shown in 

Table 2. The available N, P, and K varied from 113 to 226 kg 

ha-1, 5.56 to 22.4 kg ha-1, and 243 to 508 kg ha-1 with mean 

value of 159.6 kg ha-1, 10.32 kg ha-1, and 350.35 kg ha-1, 

respectively. All the samples were found low in nitrogen. 

Majority of the samples were low to medium in phosphorous, 

medium to high in potassium. Based on CV, Gomes and 

Garcia (2002) proposed the classification: low (<10 %), 

medium (10–20 %); high (20–30 %) and very high (>30 %) 

variabilities. Accordingly, available N, K was showing 

medium variability and P, high. Skewness is the most 

common form of departure from normality. If a variable has 

positive skewness, the confidence limits on the variogram are 

wider than they would otherwise be and consequently, the 

variances are less reliable. Algorithmic transformation is 

considered where the coefficient of skewness is greater than 

one (Webster and Oliver, 2001) [22]. All the variables were 

having skewness less than one. 

 
Table 2: Descriptive statistics of the soil nutrients 

 

 
Minimum Max Range Mean SD Kurtosis Skewness Standard Error Median CV 

N 112.94 225.79 112.85 159.59 18.05 0.42 0.35 1.33 163.07 11.31 

P 5.56 22.4 16.84 10.32 2.7 1.85 1.02 0.2 9.86 26.14 

K 243.21 508.14 264.93 350.35 60.08 -0.31 0.49 4.44 340.76 17.15 

 

Semivariogram of soil properties 

In order to identify the possible spatial structure of different 

soil properties, semivariograms were calculated and the best 

models that describe these spatial structures were identified. 

Root mean square error (RMSE), Root mean square 

standardized prediction error (RMSSE) and Mean 

standardized error (MSE) for different theoretical 

semivariogram models to fit the experimental semivariogram 

values for each soil property are given in Table 3. The 

performance of four models (Circular, Spherical, Exponential 

and Gaussian) has been compared. According to the cross-

validation parameters, generally all three models performed 

fairly well but exponential was the best model. Among 

different theoretical models tested, the spherical model was 

found best fit for phosphorous, Gaussian model was found 

best fit potassium whereas; circular model was the best for 

nitrogen. The best fit models had been identified based of the 

criteria of highest precision and lowest error for estimation of 

these nutrients. 

 
Table 3: Parameters for different theoretical semivariogram models used to fit the experimental semivariogram of soil properties 

 

Soil properties Semivariogram model RMSEa MSEc RMSSEb ASE 

Nitrogen Circular 18.2996 -0.0546 1.0128 17.9637 

 
Spherical 18.3648 -0.0485 1.0164 17.9610 

 
Exponential 18.3201 -0.0411 1.0091 18.0738 

 
Gaussian 18.3795 -0.0483 1.0166 17.9680 

phosphorous Circular 2.6512 -0.0203 0.9269 2.9401 

 
Spherical 2.6495 -0.0203 0.9249 2.9403 

 
Exponential 2.6589 -0.0138 0.9124 2.9834 

 
Gaussian 2.6522 -0.0181 0.9193 2.9506 

Potassium Circular 55.1744 -0.0090 1.0044 54.8985 

 
Spherical 55.2075 -0.0087 1.0071 54.7834 

 
Exponential 55.6307 -0.0074 1.0274 54.1328 

 
Gaussian 54.7053 -0.0117 0.9748 56.0625 

 

Semivariogram parameters (range, nugget and partial sill) for 

each soil parameter with the best-fitted model are presented in 

Table 4. The range expressed as distance that could be 

interpreted as the diameter of the zone of influence that 

represented the average maximum distance over which a soil 

property of two samples was related. 

 
Table 4: Semivariogram parameters (ordinary kriging interpolation) of soil properties 

 

Soil Parameter Semivariogram model Range (m) Nugget (Co) Partial Sill (C) Co+C (Sill) NS ratio 

Nitrogen Circular 220.354 115.507 187.912 303.42 0.38 

Phosphorous Spherical 185.019 0.001 0.070 0.07 0.02 

Potassium Gaussian 2190.060 2959.648 10166.281 13125.93 0.23 

 

At distances less than the range, measured properties of two 

samples became similar with decreasing distance between the 

two points. Nugget (Co) defines the micro-scale variability 

and measurement error for the respective soil property, 

whereas partial sill (C) indicates the amount of variation, 

which can be defined by spatial correlation structure. 

According to the classification of Cambardella et al., 1994 [2] 

nugget to sill ratio for available N, phosphorous, potassium, 

and iron was strong whereas for manganese it was low. The 

other parameters were showing moderate spatial dependency. 

The cross validation of the observed and predicted values for 

each parameter is shown in the figure 3. The figures showed 

strong and significant correlation between measured and 

predicted values for K and moderate, but significant for N and 

P. The model fitness may also be confirmed with the 

distribution of the residuals (figure 3). The distribution of the 

residuals were found to be distributed normally along the 1:1 

line for pH, OC, K, Fe, and Cu. This showed the fitness of 

model to be good. 

 

Soil fertility maps 

Based on the best fitted semivariograms models, the krigged 

maps for all the soil parameters were generated. The maps are 

shown in the figures 4. The soils were low in nitrogen and 
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phosphorous in the entire study area. The low nitrogen and 

phosphorous status of the soils in Bemetara district was also 

reported by IGKV (2013). In the similar kind of landforms 

and soils in Kavardha district (near to the study area), low 

nitrogen status have been reported (Kumar et al, 2014). Soil 

potassium was high and medium in the study area with higher 

values in the flood plains.  

 

 
 

Fig 3: Semivariogram (left), cross validation (middle), and distribution of residuals (right) of soil macronutrients (a) Available N; (b) Available 

P and (c) Available K 

 

   
Fig 4: Kriged map of soil macronutrients (a) Available N; (b) Available P and (c) Available K 
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Conclusions 

The generation of soil properties maps by kriging technique 

depicts their spatial variability and provides a strong base for 

site-specific nutrient management to optimize crop production 

and input use efficiency. Spatial variability of soil fertility 

was quantified through semivariogram analysis and 

interpolated through ordinary kriging using the best fit model. 

Results of this research indicated that geostatistics are more 

suitable methods for estimation of soil properties than other 

interpolation methods. Circular, spherical, and Gaussian 

models were found best fit for available N, P, and K, 

respectively. All the three variables were strongly spatially 

dependent. Cross-validation of kriged map shows that spatial 

prediction of basic soil properties using semivariogram 

parameters is better than assuming mean of the observed 

value for any unsampled location. The value of MAE and G 

for kriging as derived from geo-statistical analysis suggests 

that kriging technique may successfully be used for prediction 

and mapping the spatial distribution of soil parameters in the 

study area.  

 

References 

1. Bhattacharyya P, Tiwari AK, Bhatt VK. Spatial variation 

of soil strength in small hilly watershed of Shivalik-

Himalayan region in India. Ind. J Soil Conser. 2008; 

36(1):16-21. 

2. Cambardella CA, Moorman TB, Novak JM, Parkin TB, 

Karlen DL, Turco RF et al. Field scale variability of soil 

properties in Central Iowa soils. Soil Science Society of 

America Journal. 1994; 58:1501-1511. 

3. Deutsch CV. Geostatistical reservoir modeling, 1st edn. 

Oxford University Press, New York, 2002.  

4. Godwin RJ, Miller PCH. A review of the technologies for 

mapping within-field variability. Biosystems Engin. 

2003; 84:393-407. 

5. Goovaerts P. Geo-statistical tools for characterizing the 

spatial variability of microbiological and physico-

chemical soil properties. Biology and Fert. Soils. 1998; 

27:315-334. 

6. Goovaerts P. Geostatistics in soil science: state of the art 

and perspectives. Geoderma. 1999; 89:1-45. 

7. Huang X, Skidmore EL, Tibke G. Spatial variability of 

soil properties along a transect of CRP and continuously 

cropped land. In: 10th International Soil Conservation 

Organization Meeting held, Purdue University and the 

USDA-ARS National Soil Erosion Research Laboratory, 

1999, 641-647  

8. Isaaks EH, Srivastava RM. An Introduction to Applied 

Geostatistics. New York, NY: Oxford University Press, 

1989. 

9. Nirmal Kumar, Sinha NK. Geostatistics: Principles and 

Applications in Spatial Mapping of Soil Properties. In G. 

P. Obi Reddy, S. K. Singh (eds.), Geospatial 

Technologies in Land Resources Mapping, Monitoring 

and Management, Geotechnologies and the Environment 

21, Springer International Publishing AG, 2018. 

10. Kumar U, Mishra VN, Nirmal Kumar, Rathiya GR. 

Methods of soil analysis, Kalyani Publishers, Ludhiana, 

2018. ISBN: 9789327288698 

11. Lopez-Granados F, Jurado-Exposito M, Atenciano S, 

Garcıa-Ferrer A, Sanchez de la Orden M, Garcıa-Torres 

L. et al. Spatial variability of agricultural soil parameters 

in southern Spain. Plant Soil. 2002; 246:97-105. 

12. Leenares H, Okx JP. Burrough PA. Comparison of spatial 

prediction methods for mapping floodplain soil pollution. 

Catena. 1990; 17:535-550. 

13. McBratney AB, Pringle MJ. Estimating average and 

proportional variograms of soil properties and their 

potential use in precision agriculture. Precision Agric. 

1999; 1:125-152. 

14. Santra P, Chopra UK, Chakraborty D. Spatial variability 

of soil properties and its application in predicting surface 

map of hydraulic parameters in an agricultural farm. 

Current Science. 2008; 95:937-945. 

15. Schloeder CA, Zimmerman NE. Jacobs MJ. Comparison 

of methods for interpolating soil properties using limited 

data. Soil Science Society of America Journal. 2001; 

65:470-479. 

16. Smith VH, Tilman GD, Nekola JC. Eutrophication: 

impacts of excess nutrient inputs on freshwater, marine, 

and terrestrial ecosystems. Environmental Pollution 100. 

1998; (1-3):179-196. 

17. Subbiah BW, Asija GL. A rapid procedure for estimation 

of available nitrogen in soils. Curr. Sci. 1956; 25:259-

260. 

18. Trangmar BB, Yost RS, Uehara G. Application of 

geostatistics to spatial studies of soil properties. 

Advances in Agronomy. 1985; 38:45-90. 

19. Tsegaye T, Hill RL. Intensive tillage effects on spatial 

variability of soil test, plant growth, and nutrient uptake 

measurement. Soil Sci. 1998; 163:155-165. 

20. Voltz M, Webster R. A comparison of Kriging, cubic 

splines and classification for predicting soil properties 

from sample information. Journal of Soil Science. 1990; 

31: 505-524. 

21. Vieira SR, Gonzalez AP. Analysis of the spatial 

variability of crop yield and soil properties in small 

agricultural plots. Bragantia, Caminas. 2003; 62(1):127-

138. 

22. Webster R, Oliver MA. Geostatistics for Environmental 

Scientists. John Wiley and Sons, Brisbane, Australia, 

2001. 

23. Phupaibul P, Chitbuntanorm C, Chinoim N, 

Kangyawongha P, Matoh T. Phosphorus accumulation in 

soils and nitrate contamination in underground water 

under export-oriented asparagus farming in Nong Ngu 

Lauem Village, Nakhon Pathom Province, Thailand. Soil 

Science and Plant Nutrition. 2004; 50(3):385-393. 

http://www.chemijournal.com/

