

P-ISSN: 2349–8528 E-ISSN: 2321–4902 IJCS 2020; 8(1): 1746-1751 © 2020 IJCS Received: 21-11-2019 Accepted: 25-12-2019

Vinod Kumar

Department of Soil Science and Agricultural Chemistry, Chandra Shekhar Azad University of Agriculture and Technology Kanpur, Uttar Pradesh, India

Ravindra Kumar

Department of Soil Science and Agricultural Chemistry, Chandra Shekhar Azad University of Agriculture and Technology Kanpur, Uttar Pradesh, India

Devendra Singh

Department of Soil Science and Agricultural Chemistry, Chandra Shekhar Azad University of Agriculture and Technology Kanpur, Uttar Pradesh, India

KN Singh

Department of Soil Science and Agricultural Chemistry, Chandra Shekhar Azad University of Agriculture and Technology Kanpur, Uttar Pradesh, India

Yogesh Mishra

Department of Soil Science and Agricultural Chemistry, Chandra Shekhar Azad University of Agriculture and Technology Kanpur, Uttar Pradesh, India

Varun Kumar

Department of Soil Science and Agricultural Chemistry, Raja Bal Want Singh College, Agra, Uttar Pradesh, India

Om Pal Singh

Department of Soil Science and Agricultural Chemistry, Raja Bal Want Singh College, Agra, Uttar Pradesh, India

Corresponding Author: Vinod Kumar

Department of Soil Science and Agricultural Chemistry, Chandra Shekhar Azad University of Agriculture and Technology Kanpur, Uttar Pradesh, India

Effect of normal and saline water irrigation on yield and yield attributes of maize cultivar district Kannauj, Uttar Pradesh

Vinod Kumar, Ravindra Kumar, Devendra Singh, KN Singh, Yogesh Mishra, Varun Kumar and Om Pal Singh

DOI: https://doi.org/10.22271/chemi.2020.v8.i1y.8516

Abstract

The field experiment was conducted during the year 2016 and 2017 at village Jasaura district Kannauj, Uttar Pradesh. Grain yield was ranged from 43.85-70.32 q ha⁻¹ and 40.50-73.92 q ha⁻¹. Stover yield was ranged from 116.65-142.87 q ha⁻¹ and 114.25-143.15 q ha⁻¹. Biological yield was ranged from 178.00-230.57 q ha⁻¹ and 171.82-233.57 q ha⁻¹. The weight of 100 seeds was ranged from 20.88-28.40 gram and 20.75-29.78 gram. Shelling percentage was ranged from 71.15-80.22% and 70.20-80.44%. Harvest Index was ranged from 0.24-0.30% and 0.23-0.30%. Gross returns or output, net return and benefit cost ratio were ranged from Rs. 69766-107461, Rs. 3342-41037 and 0.05-0.62 and Rs. 67849-116647, Rs. (-) 1222-47576 and (-) 0.02-0.69. The highest and lowest growth and reduction on grain and stover yield was achieved from T₁-(+) 4.87% to (+) 0.19% and T₂-(-) 7.64% to (-) 2.06%. All the parameters were obtained from 2016 to 2017 year respectively.

Keywords: Longitude, latitude, benefit cost ratio, maize, GPS, harvest index, shelling percentage

Introduction

Maize (*Zea mays* L) or corn is a cereal grain belonging to the family gramineae/poaceae and is known as 'Queen of Cereals' because of its several uses. In addition to staple food for human being and quality feed for animals, maize serves as a basic raw material as an ingredient to thousands of industrial products that includes starch, oil, protein, alcoholic beverages, food sweeteners, pharmaceutical, cosmetic, film, textile, gum, package and paper industries *etc.* It is used worldwide for about 3500 products of different uses as feed (61%), food (17%) and also serves as a source of basic raw material of number of industries (22%) *viz.*, starch, ethanol, oil, alcoholic beverages, food sweeteners, pharma, cosmetics *etc.* No other cereal can be used in such many ways as maize. Every part of the maize plant has economic value the grains, leaves, stalk, tassel, and cob can all be used to produce a variety of food and non-food products. In India not only production and consumption of maize have been rising consistently, the consumption pattern has also changed over the years Kumar *et al.* (2012a) ^[8].

Materials and Methods

Location of study area

The field experiment was conducted in Jasaura village of Jalalabad block, Kannauj district situated in the western region of Uttar Pradesh with latitude of 270 05' North and longitude of 0790 49' East.

Survey of ground irrigation water

First of all 10 surveys were conducted within the Kannauj district. The 10 water samples were randomly collected with the help of Global Positioning System from surveyed area in labeled plastic bottle within the district. The collected water samples brought in laboratory for further desired chemical constituents examination.

Selection of study area

After chemical analysis of water samples the Jasaura village was found good and saline water. The most dominant crop in

summer season was maize of this village. Therefore, Jasaura village was selected for conducted experiment purpose.

Fig 1: Map of study area

Table 1: Description of treatments combination with irrigations application.

Treatments	Irrigations pattern
T1-Normal Water (GW)	Regular
T2-Saline Water (SW)	Regular
T3-NW: SW	3 NW: 3 SW
T4-SW: NW	3SW: 3 NW
T5-NW: SW	4 NW: 2 SW
T6-SW: NW	4SW: 2 NW
T7-NW:SW	5 NW: 1 SW
T8-SW: NW	5SW: 1 NW

S. No.	Particulars	Descriptions
1.	Year of commencement	5 March 2016 and 5 March 2017
2.	Location	Village: Jasaura district Kannauj
3	Recommended dose of	150: 60:40 (N: P: K) Kg ha-1 + 20Kg
5.	fertilizers	ZnSO4. 7H2O $+$ 10 tonne FYM
4.	Variety	Hybrid Maize variety DeKalb 9108 plus
5.	Spacing	60 x 30cm
6.	No. of irrigations-	6
7.	Design	RBD
8.	Replication:	4
9.	Plot size	2.5 x 2=5 M2
10.	Net area	160 M2

Table 2: Description of experimental layout

Result and Discussion Grain yield

As depicted in Table 1.3 the maximum and minimum grain yield was found in treatment T_1 -73.92q ha⁻¹ and T_2 -40.50q ha⁻¹. The grain yield increasing in T_1 -87.45 to 91.82q ha⁻¹ and reducing trends were observed in remaining treatments from

previous year 2016 to final year 2017. Similar trends were observed by Aechra (2017)^[1], Chaudhary, (2017)^[4], Feng *et al.*, (2017)^[6], Leogrande *et al.*, (2016)^[9], Liu *et al.*, (2016)^[10], Wang *et al.*, (2016)^[12], Zhang *et al.*, (2016)^[13], Awad *et al.*, (2014)^[2], Faria and Mansouri (2014)^[5], Azizian and Sepaskhah (2014)^[3], Mojid (2013)^[11].

Table 3: Grain yield (q ha-1) at harvest of maize crop in 2016 and 2017

Tuesta	Grain yield (q ha ⁻¹)			
1 reatments	Mean	Mean		
T1	70.32	73.92		
T2	43.85	40.50		
T3	52.87	51.45		
T4	51.90	50.52		
T5	56.97	53.82		
T ₆	53.55	50.25		
T7	69.80	69.77		
T8	44.97	41.95		
S. Ed (±)	1.420	1.122		
C.D at 5%	4.178	3.299		

Graph 1: Grain yield (q ha⁻¹) of maize crop in 2016 and 2017

Stover yield

As depicted in Table 1.4 the maximum and minimum stover yield was found in treatment T_1 -143.15 q ha⁻¹ and T_2 -114.25q ha⁻¹. The stover yield increasing in T_1 -142.87 to 143.15 q ha⁻¹ and reducing trends were observed in remaining treatments from previous year 2016 to final year 2017. Similar trends were reported by Aechra (2017)^[1], Chaudhary, (2017)^[4], Feng *et al.*, (2017)^[6], Liu *et al.*, (2016)^[10], Zhang *et al.*, (2016)^[13], Awad *et al.*, (2014)^[2], Mojid (2013)^[11]

Treatmonte	Stover yield (q ha ⁻¹)		
Treatments	Mean	Mean	
T1	142.87	143.15	
T_2	116.65	114.25	
T ₃	119.35	118.57	
T_4	118.17	118.05	
T5	120.47	120.42	
T_6	118.00	117.72	
T ₇	142.42	140.50	
T8	116.57	116.30	
S. Ed (±)	1.296	1.212	
C D at 5%	3 811	3 563	

Table 4: Stover yield (q ha⁻¹) at harvest of maize crop in 2016 and 2017

Graph 2: Stover yield (q ha⁻¹) of maize crop in 2016 and 2017

Biological Yield

As depicted in Table 1.5 the highest and lowest biological yield was found in treatment T_1 -233.57 q ha⁻¹ and T_2 -171.82 q ha⁻¹. The biological yield increasing in T_1 -230.57 to 233.57q ha⁻¹ and reducing trends were observed in remaining

treatments from previous year 2016 to final year 2017. Similar trends were investigated by Aechra (2017) ^[1], Chaudhary, (2017) ^[4], Feng *et al.*, (2017) ^[6], Liu *et al.*, (2016) ^[10], Zhang *et al.*, (2016) ^[13], Awad *et al.*, (2014) ^[2], Mojid (2013) ^[11],

T	Stover yield (q ha ⁻¹)		
1 reatments	Mean	Mean	
T ₁	230.57	233.57	
T ₂	178.00	171.82	
T ₃	190.02	187.47	
T4	188.50	186.92	
T5	194.97	193.87	
T ₆	189.65	185.60	
T7	229.37	227.75	
T ₈	179.02	174.95	
S. Ed (±)	2.170	2.063	
C.D at 5%	6.383	6.066	

Graph 3: Biological yield (q ha⁻¹) of maize crop in 2016 and 2017

Weight of 100 seeds

As depicted in Table 1.6 the highest and lowest weight of 100 seeds was found in treatment T_1 -29.78 gram and T_2 -20.75 gram. The weight of 100 seeds increasing in T_1 -28.40 to 29.78 gram and reducing trends were observed in remaining treatments from previous year 2016 to final year 2017. Similar trends were examined by Aechra (2017) ^[1], Chaudhary, (2017) ^[4], Feng *et al.*, (2017) ^[6], Liu *et al.*, (2016) ^[10], Zhang *et al.*, (2016) ^[13], Awad *et al.*, (2014) ^[2], Mojid (2013) ^[11].

Table 6: Weight of 100 seeds (gram) of maize crop in 2016 and2017

Treatments	Weight of 100 seeds (gram)		
Treatments	Mean	Mean	
T_1	28.40	29.78	
T_2	20.88	20.75	
T3	21.81	21.29	
T_4	21.43	21.19	
T ₅	21.75	21.58	
T_6	21.60	21.07	
T ₇	27.84	27.97	
T_8	21.39	21.15	
S. Ed (±)	0.265	0.226	
C.D at 5%	0.780	0.664	

Shelling percentage

As depicted in Table 1.7 the highest and lowest shelling percentage was found in treatment T_1 -80.44% and T_2 -70.20%. The shelling percentage increasing in T_1 -79.98 to 80.44% and reducing trends were observed in remaining treatments from previous year 2016 to final year 2017. Similar trends were determined by Aechra (2017)^[1], Chaudhary, (2017)^[4], Feng *et al.*, (2017)^[6], Liu *et al.*, (2016)^[10], Zhang *et al.*, (2016)^[13], Awad *et al.*, (2014)^[2], Mojid (2013)^[11].

Table 7: Shelling percentage of maize crop in 2016 and 2017

Treatments	Shelling percentage		
Treatments	Mean	Mean	
T ₁	79.98	80.44	
T ₂	71.15	70.20	
T ₃	74.81	74.21	
T_4	73.98	73.28	
T5	76.46	74.05	
T ₆	74.74	74.01	
T ₇	80.22	80.26	
T8	71.67	71.33	
S. Ed (±)	0.515	0.322	
C.D at 5%	1.516	0.946	

Harvest index (H.I)

As depicted in Table 1.8 the highest and lowest shelling harvest index was found in treatment T_1 -0.30% T_7 -0.30% and T_2 -0.23% T_8 -0.23% The harvest index increasing in T_1 -0.29 to 0.30%, invariability in treatments T_5 , T_7 and reducing trends were observed in remaining treatments from previous year 2016 to final year 2017. Similar trends were determined by Aechra (2017) ^[1], Chaudhary, (2017) ^[4], Feng *et al.*, (2017) ^[6], Liu *et al.*, (2016) ^[10], Zhang *et al.*, (2016) ^[13], Awad *et al.*, (2014) ^[2], Mojid (2013) ^[11].

Table 8: Harvest index of maize crop in 2016 and 2017

Turster	Harvest index		
1 reatments	Mean	Mean	
T1	0.29	0.30	
T_2	0.24	0.23	
T3	0.28	0.27	
T_4	0.27	0.26	
T5	0.27	0.27	
T ₆	0.28	0.27	
T_7	0.30	0.30	
T8	0.24	0.23	
S. Ed (±)	0.005	0.003	
C.D at 5%	0.016	0.010	

Gross returns or output

As depicted in Table 1.9 and 1.10 the highest gross return was obtained from

Table 7. Oross returns of Outbut III 201	9: Gross returns or output in 2016	
---	---	--

Treatments	Gross return or Output (Grain @ Rs. 1325 and Stover @ Rs. 100 per quintal)				
1 reatments	Grain yield (q ha ⁻¹)	Sale Cos (Rs.1225)	Stover yield (q ha ⁻¹)	Sale Cost (Rs.100)	Gross Return (Rs.0.0)
T_1	70.32	93174	142.87	14287	107461
T_2	43.85	58101	116.65	11665	69766
T ₃	52.87	70053	119.35	11935	81988
T_4	51.90	68767	118.17	11817	80584
T ₅	56.97	75485	120.47	12047	87532
T ₆	53.55	70954	118.00	11800	82754
T ₇	69.80	92485	142.42	14242	106727
T8	44.97	59585	116.57	11657	71242

Table 10: Gross returns or output in 2017

Treatmonte	Gross return or Output (Grain @ Rs. 1325 and Stover @ Rs. 100 per quintal)				
Treatments	Grain yield (q ha ⁻¹)	Sale Cost (Rs.1225)	Stover yield (q ha-1)	Sale Cost (Rs.100)	Gross Return (Rs.0.0)
T 1	73.92	100901	143.15	15746	116647
T_2	40.50	55282	114.25	12567	67849
T3	51.45	70229	118.57	13043	83272
T_4	50.52	68960	118.05	12985	81945
T5	53.82	73464	120.42	13246	86710
T ₆	50.25	68591	117.72	12949	81540
T ₇	69.77	95236	140.95	15504	110740
T ₈	41.95	57262	116.30	12793	70055

Treatment T₁ followed by T₇, T₅, T₃, T₄, T₆, T₈, T₂ in previous year 2016 and second year 2017 respectively. The gross return was increased from previous to final year except treatments T₂, T₅, T₆ and T₈ in these treatments gross return was decreased. The lowest gross return was achieved from treatment T₂ in previous year whereas; negatively gross return was obtained during second year from treatment T₂. Similar trends were observed by Faria and Mansouri (2014) ^[5].

Input, net return and benefit cost ratio

As depicted in Table 1.11 and 1.12 the input was change Rs. 66424=00 to 69071 from previous year to final year due to increasing cost of input components. The highest net return and B.C Ratio were achieved from treatment T₁ followed by T₇, T₅, T₃, T₄, T₆, T₈, T₂ in previous year 2016 and final year 2017 respectively.

Table 11: Input, gross return, net return and benefit cost ratio in2016

Treatments	Input (Rs.)	Gross return (Rs.)	Net return (Rs.)	B.C Ratio
T1	66424	107461	(+) 41037	(+) 0.62
T_2	66424	69766	(+) 3342	(+) 0.05
T3	66424	81988	(+) 15564	(+) 0.23
T_4	66424	80584	(+) 14160	(+) 0.21
T 5	66424	87532	(+) 21108	(+) 0.32
T ₆	66424	82754	(+) 16330	(+) 0.24
T_7	66424	106727	(+) 40303	(+) 0.61
T ₈	66424	71242	(+) 4818	(+) 0.07

Table 12: Input, Gross return, Net return and Benefit Cost Ratio in2017

Treatments	Input (Rs.)	Gross return (Rs.)	Net return (Rs.)	B.C Ratio
T1	69071	116647	(+) 47576	(+) 0.69
T ₂	69071	67849	(-) 1222	(-) 0.02
T ₃	69071	83272	(+) 14201	(+) 0.20
T_4	69071	81945	(+) 12874	(+) 0.19
T ₅	69071	86710	(+) 17639	(+) 0.25
T ₆	69071	81540	(+) 12469	(+) 0.18
T7	69071	110740	(+) 41669	(+) 0.60
T8	69071	70055	(+) 984	(+) 0.01

The lowest net return and B.C Ratio were achieved from treatment T_2 in previous year whereas; negatively net return and B.C Ratio were obtained during second year from treatment T_2 . Similar trends were reported by Faria and Mansouri (2014)^[5].

Growth and reduction on grain and Stover yield

As depicted in Table 1.13 the highest and lowest growth and reduction on grain and Stover yield was received from T_{1} -(+) 4.87% to (+) 0.19% and T_{2} -(-) 7.64% to (-) 2.06% from previous year 2016 to final year 2017 respectively. The stability was not found in any treatments previous to final year. Similar trends were observed by Azizian and Sepaskhah (2014) ^[3].

Treatments	Grain yield (q ha ⁻¹)	Grain yield (q ha ⁻¹)	% age growth and reduction	Stover yield (q ha ⁻¹)	Stover yield (q ha ⁻¹)	% age growth and
	2016	2017		2016	2017	reduction
T_1	70.32	73.92	(+) 4.87	142.87	143.15	(+) 0.19
T_2	43.85	40.50	(-) 7.64	116.65	114.25	(-) 2.06
T3	52.87	51.45	(-) 2.68	119.35	118.57	(-) 0.65
T_4	51.90	50.52	(-) 2.66	118.17	118.05	(-) 0.10
T5	56.97	53.82	(-) 5.53	120.47	120.42	(-) 0.04
T 6	53.55	50.25	(-) 6.16	118.00	117.72	(-) 0.24
T ₇	69.80	69.77	(-) 0.04	142.42	140.95	(-) 1.03
T ₈	44.97	41.95	(-) 6.71	116.57	116.30	(-) 0.23

International Journal of Chemical Studies

Conclusion

Among the various studies was found that treatment first superior over all treatments. When number of saline irrigation water increasing and normal water irrigation applied in decreasing manner maize growth and yield was found reduced and physico-chemical properties of soil were going increasing order. The soil application of gypsum and phospho-gypsum will be best amendments for management practices to sustain productivity and avoid soil from degradation losses.

References

- 1. Aechra S, Yadav BL, Ghosalya BD, Bamboriya JS. Effect of soil salinity, phosphorus and biofertilizers on physical properties of soil, yield attributes and yield of cowpea [*Vigna unguiculata* (L.) Wilczek], Journal of Pharmacognosy and Phytochemistry. 2017; 6(4):1691-1695.
- Awad MS, Solaimani GAl, Fathy S, Nakhlawy El. Effect of soil salinity at germination and early growth stages of two maize (*Zea mays* L.) cultivars in Saudi Arabia Journal of Bioscience and Agriculture Research. 2014; 1(1):47-53.
- Azizian A, Sepaskhah AR. Maize response to different water, salinity and nitrogen levels: agronomic behavior. International Journal of Plant Production. 2014; 8(1):107-130.
- 4. Chaudhary OP. Long-term impact of cyclic use of sodic and canal water for irrigation on soil properties and crop yields in cotton-wheat rotation in a semiarid Climate, Agric. Res. 2017; 6(3):267-272.
- Farnia A, Mansouri M. Effect of Plant density to Yield and Yield components of Maize (*Zea mays* L.) Cultivars. Bulletin of Environment, Pharmacology and Life Sciences, [Special Issue V]. 2014; 3:123-127.
- Feng G, Zhang Z, Wan C, Lu P, Bakour A. Effects of saline water irrigation on soil salinity and yield of summer maize (*Zea mays* L.) in subsurface drainage system. Agricultural Water Management. 2017; 193:205-213.
- 7. Heidari M, Jamshid P. Interaction between salinity and potassium on grain yield, carbohydrate content and nutrient uptake in pearl millet. ARPN J Agric Bio Sci. 2010; 5:25-32.
- 8. Kumar RS, Kumar B, Kaul J, Karjagi CG, Jat SL, Parihar CM *et al*. Maize research in India–Historical prospective and future challenges. Maize Journal. 2012a; 1(1):1-6.
- 9. Leogrande R, Vitti C, Lopedota O, Ventrella D, Montemurro F. Effects of irrigation volume and saline water on maize yield and soil in southern Italy. Irrigation and Drainage. 2016; 65(3):243-253.
- Liu XW, Feike T, Chen S, Shao L, Zhang X. Effect of saline irrigation on salt accumulation and grain yield in the winter-summer maize double cropping system in low plain of North China, Journal of Integrative Agriculture. 2016; 15(12):2886-2898.
- 11. Mojid MA, Zahid Hossain ABM. Conjunctive Use of Saline and Fresh Water for Irrigating Wheat (*Triticum aestivum* L.) at Different Growth Stages, A Scientific Journal of Krishi Foundation. 2013; 11(1):15-23.
- 12. Wang Q, Huo Z, Zang L, Wang J, Zhao Y. Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China, Agricultural Water Management. 2016; 163:125-138.

 Zhang P, Senege M, Dai Y. Effect of salinity stress on growth, yield, fruit quality and water use efficiency of tomato under hydroponics system. Reviews in Agricultural Sciences. 2016; 4:46-55.

http://www.chemijournal.com