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Abstract 

The experiment was conducted to study the sperm acrosome integrity and mitochondrial membrane 

potential (MMP) of frozen thawed buffalo semen treated with heparin binding protein (HBP). Buffalo 

semen straws from 10 bulls were procured from Central Frozen Semen Production and Training Institute, 

Hesseraghatta, Banglore-560088. The frozen straws were thawed at 37 ºC for 30 seconds and emptied 

into a 15mL sterile plastic centrifuge tube containing 1mL capacitation medium (control), addition of 

25µg/mL (treatment I), 50µg/mL (treatment II) and 100µg/mL (treatment III) of HBP. The contents were 

incubated at 37 ºC for 2 hours. After incubation, sperm acrosomal integrity was assessed by Giemsa stain 

method. In control, HBP treatment I, II and III, 51.50% ± 1.29, 46.30% ±0.86, 43.40% ± 0.66and 42.15% 

± 0.40 spermatozoa, respectively had intact acrosome. But, 48.50% ±1.29, 53.70% ± 0.86, 56.60% ± 

0.66and 57.85% ± 0.40 spermatozoa in control, HBP treatment I, II and III respectively had lost 

acrosome. Significantly (P<0.05), higher percentages of spermatozoa lost their acrosome integrity in 

HBP treatments as compared to control. Sperm MMP was determined by JC-1 (5, 5’, 6, 6’ - tetrachloro-

1, 1’, 3, 3’-tetraethylbenzimidazolylcarbocyanine iodide) stain technique. Significantly (P<0.05) higher 

percentages of spermatozoa in HBP treatment I (44.05% ± 0.61), II (45.35% ± 0.62) and III (45.05% ± 

0.77) showed mitochondrial membrane potential in comparison with control (39.75% 

±0.60).Insignificant difference in sperm MMP was observed among treatments. This study suggested that 

addition of HBP in capacitation medium induces sperm acrosome reaction and enhances mitochondrial 

membrane potential. 

 

Keywords: Heparin binding protein, acrosome integrity, mitochondrial membrane potential, 

spermatozoa, buffalo semen 
 

Introduction 

Seminal plasma proteins were associated with the fertilizing capacity of sperm. Some of these 

proteins were found in seminal plasma and others were bound with sperm membrane 
[1,2,3,4].The role of seminal plasma proteins in the regulation of sperm functions was highly 

complex and several studies provided direct evidence that seminal plasma proteins were 

adsorbed to the surface of sperm [5] and affected its functions and properties [6]. The addition of 

seminal plasma to frozen thawed ram sperm improved motility, viability and mitochondrial 

respiration [7, 8]. Addition of seminal plasma proteins also increased the resistance of 

spermatozoa of bull [9], ram [10] and red deer [11] to cryo-injuries. 

Some of these proteins are bound to the sperm surface during ejaculation and thus protein-

coating layers are formed [12]. In the female reproductive tract, seminal plasma proteins bound 

to the sperm surface participate first in the formation of the oviductal sperm reservoir [13, 14] ; 

second, in the control of sperm capacitation by the action of negative (decapacitation factors) 

and positive regulatory (capacitation-stimulating factors) factors, and finally in central 

fertilization events such as sperm–zona pellucida interaction and sperm–egg fusion [15,16]. 

HBP is one of seminal plasma proteins and has been identified in bovine seminal plasma 

which coats the surface of spermatozoa. HBP is a modulator of sperm capacitation [17, 18, 19]. 

Successful fertilization depends on the presence of spermatozoa at the site of fertilization and 

capacitation [20]. Another subsequent critical step is the acrosome reaction, which is normally 

induced by binding of spermatozoa with the oocyte [21]. 
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Affinity for heparin was found to be a primary feature of 

seminal plasma proteins in most species of mammals. 

Proteins that bind polysaccharide regulate capacitation and 

acrosome reaction processes. Affinity of plasma proteins to 

mannose of the fallopian tube epithelium enables the 

formation of sperm reservoirs in the female reproductive tract 
[22]. Presence of fertility related 31 kDa HBP may be an 

indication of high fertility of a bull. [23]. The affinity, but not 

just the presence, of HBP in sperm membranes related to the 

potential of sperm to capacitate, acrosome react, and 

subsequently fertilize an oocyte [24]. Eight major heparin 

binding proteins (HBPs) in the molecular weight range of13-

71kDa were observed in buffalo seminal plasma [25]. Thus, 

seminal fluid HBPs play a vital role in spermatozoon survival 

and overall fertilization process and any alteration in these 

proteins can be directly related to infertility. Heparin alone 

cannot capacitate epididymal spermatozoa. However, when 

accessory gland proteins that bind heparin are added to 

epididymal spermatozoa, these spermatozoa are able to 

undergo capacitation and bind to the ZP with increase in 

acrosome reaction [26]. HBPs allow spermatozoa to face the 

challenge of stress by lysophosphatidyl-choline and undergo 

the acrosome reaction [27]. 

Although, HBPs have been identified in several species like 

bovine (Chandonnet et al., 1990), equine [29], boar [30], and 

canine [31], limited studies have been conducted on the 

potential roles of HBPs on sperm functions. Hence, the 

experiment was undertaken to study the additive effects of 

HBP on the sperm acrosome integrity and mitochondrial 

membrane potential (MMP) of frozen thawed buffalo semen. 

 

Materials and Methods 

Materials 

All the plasticware used in this study were purchased from 

Tarson, India. All the glassware used in this study were 

purchased from Borosil, India. All chemicals used in this 

study were procured from Sigma-Aldrich chemicals Co., 

USA. 

 

Methods  

Capacitation stock solution 

 
Capacitation stock solution / Sperm TALP was prepared as detailed 

below. 
 

Components 
For 1000 mL  

(in mM) 

Sodium chloride (NaCl) 114 

Potassium chloride ( KCl) 3.2 

Calcium chloride ( CaCl2.2H2O) 2.0 

Magnesium chloride (MgCl2.6H2O) 0.5 

Sodium dihydrogen orthophosphate (NaH2PO4.H2O) 0.34 

Sodium lactate ( 60% syrup) 1.86 μL/mL 

Phenol red 10μg/mL 

 
Pyruvate stock solution 

 

Sodium pyruvate 22mg/10 mL capacitation medium 

 
Heparin stock solution 

 

Heparin 5mg/10mL capacitation medium 

 
Gentamicin stock solution 

 

Gentamicin 50mg/mL in saline 

 

All the stock solutions were filter sterilized (0.2 μm) and 

stored at 4 ˚C until use. 

 
Capacitation working solution 

 

Components For 10 mL 

Capacitation stock solution 9.5 mL 

Pyruvate stock solution 0.1 mL 

Heparin stock solution 0.4 mL 

Gentamicin stock solution 10 μL 

Bovine serum albumin (Fatty acid free) 60 mg 

 

The working solution was prepared freshly, filter sterilized 

(0.2 μm) and pre-warmed at 37 ˚C for 30 minutes before use. 

pH and osmolality of the stock and working medium were 

maintained at 7.6-7.8 and 280-300 mOsm, respectively. 

 

Sperm Preparation 

Frozen semen straws from ten buffalo bulls were procured 

from Central Frozen Semen Production and Training Institute, 

Hesseraghatta, Banglore-560088. The straws were collected 

in liquid nitrogen (LN2 at -196 ºC) container, transported and 

stored in the semen bank of Madras Veterinary College, 

Chennai- 600 007. The frozen straws were thawed at 37 ºC 

for 30 seconds and emptied into 15 mL sterile plastic 

centrifuge tube containing 1 mL of capacitation medium and 

treated as below. 

 
Experimental groups and Method of treatment 

 

Experimental groups Method of treatment 

Control Capacitation medium alone (sperm TALP) 

Treatment I 
Capacitation medium + Heparin binding 

protein (HBP-25µg/mL) 

Treatment II 
Capacitation medium +Heparin binding 

protein (HBP-50µg/mL) 

Treatment III 
Capacitation medium +Heparin binding 

protein (HBP-100µg/mL) 

 

The contents were incubated at 37 ºC for 2 hours. After 

incubation, the sperm acrosome integrity and mitochondrial 

membrane potential (MMP) were assessed.  

 

Evaluation of Sperm Acrosome Integrity 

A drop of fresh semen was used to prepare a thin smear and 

fixed in 5 per cent formaldehyde for 30 minutes. The slide 

was washed with running tap water, air dried and then smear 

was immersed in working Giemsa stain for 6 hours at 37˚C. 

Finally, slide was washed in running water and air dried. 200 

spermatozoa were counted with a phase contrast microscope 

(1000X). Acrosomal intact spermatozoa showed acrosomal 

cap and acrosomal nonintact spermatozoa lost acrosomal cap 
[32]. 

 

Evaluation of Sperm MMP 

Mitochondrial membrane potential was assessed by using JC-

1 (5, 5’, 6, 6’ - tetrachloro-1, 1’, 3, 3’-

tetraethylbenzimidazolylcarbocyanine iodide). 1.53 mM of 

JC-1 in DMSO, 8.69 mM of CFDA in DMSO and 0.4 mM of 

PI in PBS were prepared and stored at - 20˚C in dark. 2μl of 

JC-1 and 10μl of CFDA solutions were added to 100μl of 

semen sample. The semen samples were incubated at room 

temperature for 30 minutes in dark. 

The sperm nuclei were counterstained by adding 10μl of PI 

stock solution and incubated in dark for 10 minutes. Then the 
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sperm cells were washed in PBS by centrifugation at 560 g 

for 5 minutes. Sperm cells suspended in PBS were placed on a 

clean grease free glass slide and covered with cover slip and 

observed under fluorescent microscope. JC-1 existed as a 

monomer with excitation and emission peaks in the green 

wavelengths (510-520 nm). However, it also exhibited a 

second peak in the red-orange range (590 nm). Spermatozoa 

with high MMP exhibited red- orange fluorescence and those 

with medium to low MMP exhibited green fluorescence. 

Spermatozoa without MMP did not exhibit fluorescence. A 

minimum of 200 spermatozoa were observed [33]. 

 

Statistical Analysis 

The statistical analysis was carried out by IBM, SPSS version 

20.0 for windows. The percentage value of variables was 

converted into Arsine value before performing one way 

analysis of variance (ANOVA). 

 

Results 

Effect of HBP on Sperm Acrosome Integrity  

The sperm acrosomal integrity was assessed by Giemsa stain 

method. Table 1 shows that 51.50% ± 1.29, 46.30% ±0.86, 

43.40% ± 0.66and 42.15% ± 0.40spermatozoa in control, 

HBP treatment I, II and III respectively had intact acrosome. 

But, 48.50% ±1.29, 53.70% ± 0.86, 56.60% ± 0.66and 

57.85% ± 0.40 spermatozoa in control, HBP treatment I, II 

and III respectively had lost acrosomal integrity. Significantly 

(P<0.05), higher percentages of spermatozoa lost their 

acrosomal integrity in HBP treatments as compared to 

control. 

 

Effect of HBP on Sperm MMP  

The sperm MMP was determined by JC-1(5, 5’, 6, 6’-

tetrachloro-1, 1’, 3, 3’-tetraethylbenzimidazolylcarbocyanine 

iodide) stain technique. Table 2 depicts that significantly 

(P<0.05) higher percentages of spermatozoa in HBP treatment 

I (44.05% ± 0.61), II (45.35% ± 0.62) and III (45.05% ± 0.77) 

showed mitochondrial membrane potential in comparison 

with control (39.75% ±0.60). Among treatments, insignificant 

difference was observed in sperm MMP. 

 

Discussion 

Effect of HBP on Sperm Acrosome Integrity  

In this study, significantly higher number of spermatozoa lost 

the acrosome integrity on treatment with HBP. Loss of 

acrosome integrity is mediated by the acrosome reaction 

through interaction of HBP with heparin which cause an 

increase in Ca2+ ions in acrosome matrix [34].and results in 

fusion of the plasma membrane overlying the acrosome with 

the outer acrosomal membrane, formation of vesicles and 

time-dependent release of hydrolytic enzymes from the 

acrosome and finally the disappearance of acrosomal 

contents. Fusion of the plasma and outer acrosomal 

membranes coupled with the release of hydrolytic enzymes 

allows the sperm to penetrate the zona pellucida and fertilize 

an oocyte [35, 36]. HBPs bind to the epididymal sperm and 

increase the ability of the acrosome reaction in response to the 

heparin and other proteins of the zona pellucida [37]. Acrosin is 

one of the major sperm acrosomal proteases [38].that 

modulates protein dispersion during acrosome reaction [39].and 

sperm penetration into zona pellucida [40].  

 

Effect of HBP on sperm MMP  

This study showed a significant increase in the number of 

spermatozoa that exhibit MMP on treatment with HBP. It is 

due to interaction of HBP with heparin causes increased 

influx of Ca2+ ions into mitochondria which activates 

mitochondrial enzymes involved in oxidative phosphorylation 

to yield energy i.e. ATP required for hyperactivation and 

successful penetration of spermatozoa into the oocytes [41, 42]. 

During the process of oxidative phosphorylation, the protons 

are pumped from inside the mitochondria to the outside, 

creating an electrochemical gradient called the inner MMP 
[43]. Oxidation of thiols in sperm proteins by O2- and H2O2 

was found to be associated with inhibition of sperm motility 

and fertilizing ability [44]. Artificially induced oxidative stress 

by incubation with H2O2 has been shown to inhibit sperm 

motility, decrease ATP levels, and dissipate the MMP [45]. 

Correlation of MMP results with sperm morphology may 

provide information as morphologically abnormal 

spermatozoa with midpiece defects have been linked with 

excessive production of ROS [46]. Mitochondrial dysfunction 

has been shown to increase production of ROS [47, 48, 49]. 

Storage of spermatozoa outside the body cavity can impact 

availability of oxygen and metabolic processes. 

Cryopreservation of spermatozoa is associated with both 

oxidative stress and physical stress [50, 51].Cryopreservation of 

bull sperm in egg yolk based extenders significantly reduced 

the intracellular level of thiols and post-thaw treatment of 

frozen semen with thiols containing antioxidants prevented 

H2O2 -mediated loss of sperm motility [52]. The intracellular 

concentration of ATP is decreased or lost and the AMP/ADP-

rate is increased by the cryopreservation. Sperm motility 

induced by cryopreservation is believed to be mainly 

associated with mitochondrial damage [53]. Increased ROS 

produced by the spermatozoa is associated with mitochondrial 

injury with a marked decrease in MMP and the measurement 

of MMP can provide useful information about the fertility 

potential of an individual [54]. The structural changes produced 

in the post thaw sperm cell membrane are primarily linked to 

altered abilities for energy source. This would later influence 

both cellular metabolism and other sperm functions such as 

motility [55, 56]. High correlation of MMP with forward 

motility confirms the strong link between functional status of 

mitochondria and sperm quality [57]. Energy requirement 

increases significantly with the onset of activated motility, 

and becomes even more pronounced when motility is 

hyperactivated [58,59]. Like many metabolically active body 

cells, spermatozoa possess the metabolic machinery required 

for glycolysis, citric acid cycle and oxidative phosphorylation. 

ATP for spermatozoa is mainly derived either by glycolysis in 

the cytoplasm or through oxidative phosphorylation in the 

mitochondria [60].  

 

Conclusion  

This study suggested that addition of HBP in capacitation 

medium induces sperm acrosome reaction and enhances 

mitochondrial membrane potential. 
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Table 1: Effect of HBP Supplementation on Sperm Acrosome Integrity of Frozen Thawed Buffalo Semen 
 

Groups Acrosome intact spermatozoa (% ± SE) Acrosome non intact spermatozoa (% ± SE) 

Control 51.50 a ± 1.29 48.50 a ± 1.29 

Treatment I (HBP-25µg/mL) 46.30 b ± 0.86 53.70 b ± 0.86 

Treatment II (HBP-50µg/mL) 43.40 b ± 0.66 56.60 b ± 0.66 

Treatment III (HBP-100µg/mL) 42.15b ± 0.40 57.85 b ± 0.40 

Mean with different superscripts (a and b) in a column are significantly different (P<0.05) between groups. 

Data are presented as mean % ± SE 

 
Table 2: Effect of HBP Supplementation on Sperm MMP of Frozen Thawed Buffalo Semen 

 

Groups Spermatozoa with MMP (%±SE) Spermatozoa without MMP (%±SE) 

Control 39.75 a ± 0.60 60.25 a ± 0.60 

Treatment I (HBP-25µg/mL) 44.05 b ± 0.61 55.95 b ± 0.61 

Treatment II (HBP-50µg/mL) 45.35 b ± 0.62 54.65 b ± 0.62 

Treatment III (HBP-100µg/mL) 45.05b ± 0.77 54.95 b ± 0.77 

Mean with different superscripts (a and b) in a column are significantly different (P<0.05) between groups. 

Data are presented as mean % ± SE 
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