

International Journal of Chemical Studies

P-ISSN: 2349–8528 E-ISSN: 2321–4902 www.chemijournal.com IJCS 2020; 8(3): 1829-1832 © 2020 IJCS Received: 19-03-2020 Accepted: 21-04-2020

AP Khapre

Department of Food Engineering, College of Food Technology, VNMKV, Parbhani, Maharashtra, India

HW Deshpande

Department of Food Microbiology & Safety, College of Food Technology, VNMKV, Parbhani, Maharashtra, India

SD Katke

Department of Food Microbiology & Safety, College of Food Technology, VNMKV, Parbhani, Maharashtra, India

Corresponding Author: AP Khapre Department of Food Engineering, College of Food Technology, VNMKV, Parbhani, Maharashtra, India

A review on microbial contamination of Cereal grains

AP Khapre, HW Deshpande and SD Katke

DOI: https://doi.org/10.22271/chemi.2020.v8.i3y.9474

Abstract

Cereal grains are the most important staple foods for mankind worldwide. The constantly increasing annual production and yield is matched by demand for cereals, which is expected to increase drastically along with the global population growth. A critical food safety and quality issue is to minimize the microbiological contamination of grains as it affects cereals both quantitatively and qualitatively. Microorganisms present in cereals can affect the safety, quality, and functional properties of grains. Therefore, it is essential to reduce cereal grain contamination to the minimum to ensure safety both for human and animal consumption. Current production of cereals relies heavily on pesticides input; however, numerous harmful effects on human health and on the environment highlight the need for more sustainable pest management and agricultural methods.

Keywords: Cereal grains, food safety, microorganisms, mycotoxin, human health.

Introduction

Cereals are one of the most important agricultural products in the world, both as human foods and as the main constituent of animal feed. Development of agriculture in prehistoric times was heavily associated with domestication of cereal grains and since their first cultivation most civilizations have become dependent upon cereals for the majority of its food supply (Cordain, 1999)^[5]. Cereal grains are the most commonly consumed food group worldwide and they are grown on about 60% of the cultivated land in the world (Koehler and Wieser, 2013)^[14]. In order to meet the requirements of a growing world population, worldwide production and yield of cereals has been increased for the last 50 years. Major types of cereal grains include maize, rice, wheat, barley, sorghum, millet, oats, and rye (FAO, 2017)^[8].

The potential sources for the contamination of grains are mostly environmentally based and include air, dust, soil, water, insects, rodents, birds, animals, microbes, humans, storage and shipping containers, and handling and processing equipment. Most contamination is of a microbiological nature but heavy metals and process contaminants play a role, too. The secondary metabolites produced by fungi which can grow on grain (or mycotoxins) belong to the most toxic contaminants occurring in a wide range of food commodities (Bennett and Klich, 2003) ^[2]. Some molds can potentially produce harmful mycotoxins and pose a serious health risk for consumers. Losses of cereal grains during storage are estimated between 5 and 30% due to molds and mycotoxins, 5% for insects and 2% for rodents, with an average yield loss of 1% for developed and 10% to 30% for developing countries. Depending on climatic conditions during growth, grains carry a microbial load with a high diversity of potential spoilage organisms when harvested. In addition, post-harvest contamination during transport is possible. This microbial load consists of bacteria, yeasts, and filamentous fungi belonging to many different genera. The activity of these micro-organisms during storage and, accordingly, the shelf life of the crop is dependent on a range of factors. Amongst the most influential parameters are moisture content and water availability during storage. As a result, grains are usually stored at low moisture contents of 12–13% and a water activity of <0.70.

Sources of microbial contamination of cereal grains

Microbial contamination of cereal grains occurs during crop growth, harvesting and postharvest drying and storage (Magan and Aldred, 2006)^[19] and it derives from several sources,

including air, dust, water, soil, insects, birds and rodents feces as well as contaminated equipment and unsanitary handling. The type of microbial contamination varies according to the growing region and is heavily influenced by environmental conditions such as drought, rainfall, temperature, and sunlight, as well as unsanitary handling, harvesting and processing equipment, and poor storage conditions (Bullerman and Bianchini, 2009)^[3]. High rainfall just before harvest is a factor inducing extensive colonization of the grain ears by *Alternaria* spp., causing black fungi discoloration, that can be observable both on the surface of the kernels and as beneath the pericarp.

Table 1: Sources of microbial contamination of cereal grains

Type of microorganisms	Name of microorganisms	References
Bacteria	Salmonella, Escherichia coli, Bacillus cereus, Erwinia herbicola, Xanthomonas	Laca et al., 2006 [15]; Harris et al.,
Dacteria	campestris, Azotobacter, Pseudomonas, Micrococcus, Lactobacillus	2013 [11]
Filementous fungi	Eurotium, Aspergillus, Penicillium, Rhizopus, Mucor, Alternaria, Cladosporium,	Harris et al., 2013 [11]; Pitt and
ritamentous tungi	Fusarium, Helminthosporium, Sporobolomyces Rhodotorula, Hansenula,	Hocking, 2009 ^[21] ; Bullerman and
and yeasts	Torulopsis, Candida, and Saccharomyces	Bianchini, 2009 ^[3]

Table 2: Mycotoxins in cereal grains

Mycotoxin	Fungal source(s)	Effects of ingestion for humans	Commodity
Deoxynivalenol/nivalenol	Fusarium graminearum, Fusarium crookwellense, Fusarium culmorum	Human toxicoses e.g. nausea, vomiting, diarrhoea, headache, fever	Wheat, maize, barley
Zearalenone	Fusarium graminearum, Fusarium crookwellense, Fusarium culmorum	Identified by the International Agency for Research on Cancer (IARC 1994) as a possible human carcinogen	Maize, wheat
Ochratoxin A	Aspergillus ochraceus, Penicillium verrucosum	Suspected by IARC as human carcinogen	Barley, wheat, and many other commodities
Fumonisin B1	Fusarium moniliforme plus several less common species	Suspected by IARC as human carcinogen	Maize

Techniques for control of microbial spoilage of cereal grains

Certain technologies applied to control microbial spoilage of cereals successfully reduce the microbial load.

Table 3: Current methods and	technologies used for	cereal grains preservation
------------------------------	-----------------------	----------------------------

Method/Technology	Description	Limitations	References
	Chemicals designed to prevent and control	High environmental impacts	
Pesticides	the occurrence of pests causing harm to crops -	Direct negative impact on human	Liu et al. (2015) ^[16] ; Jess et al.
resticides	molds (fungicides), weeds (herbicides) and insects	health	(2014) ^[12]
	(insecticides)	Increasing resistance against pesticides	
		Lack of uniformity of the process	
Draving	Grains are dried to a low moisture content	Over-drying may damage the grains	Varga et al. (2010) [25]; Magan
Drying		and cause economic losses as well as	and Aldred, 2006 ^[19]
		increase mycotoxin contamination	
	Process during which the bran layers are removed	Not completely suitable for wheat due	
Debranning		to the crease on the wheat kernels	Laca <i>et al.</i> (2006) ^[15]
	from the endosperin by metion and abrasion	Whole-grain demand in the market	
Chloring and	Due to their oxidizing capacity, chlorine and	Low inactivation of fungal spores on	Delaquis and Bach (2012) ^[6] ;
hypochlorite	hypochlorite treatments are one of the most widely	cereal grains and generation of toxic	Virto et al. (2005) [26];
	used processes for microbial control	by-products after the treatment	Andrews et al. (1997) ^[1]
	iation Exposing food to a certain amount of ionizing radiation	Can negatively modify the quality and	Lung at al. (2015) [17].
Irradiation		technological properties of cereals and	Early $et al. (2013)^{1/2}$,
		cereal products	1 arkas et ut. (2014)
	Triatomia ovugan formed by addition of a free	The cost of treatment can be relatively	Greene et al. (2012) ^[10] ;
Ozone	radical of oxygen to molecular oxygen	high due to complex technology	Environmental Protection
	radical of oxygen to molecular oxygen		Agency [EPA] (1999) [7]

Future trends for decontamination of cereal grains

 Table 4: Potential methods and technologies for cereal grains preservation

Method/ Technology	Description	Limitations	References
Microwave (MW) treatment	Electromagnetic waves with frequency within 300 MHz to 300 GHz; microbial inactivation based mainly on thermal effect	Seed viability and seedling vigour can be decreased after the treatment Higher microbial reduction levels in presence of other stresses, such as acidic pH or increased temperature	Chandrasekaran <i>et al.</i> (2013) ^[4] ; Reddy <i>et al.</i> (1998) ^[22] ;
Pulsed UV light	Short-duration, high-power pulses of a broad spectrum of white light from the UV (50% of the spectrum), to the near infrared region	Low ability to penetrate grains because of their irregular and complex surface Can decrease germination rate of the seeds	Maftei <i>et al.</i> (2013) ^[18] ; Keklik <i>et al.</i> (2012) ^[13]

Non-thermal (cold) plasma	Partially ionized gas consisting of highly reactive chemical species	Efficiency of the method depends on the specific properties of the food product and its surface	Niemira (2012) ^[20] ; Schluter <i>et al.</i> (2013) ^[24]
Organic acids	Antimicrobial agents due to the reduction of the environmental pH	Can increase moisture content and penetrate into the endosperm of grains	Sabillon <i>et al.</i> (2017) ^[23]

Conclusion

At a time of rapid growth in global populations, sufficient nutritional supply to humanity has become increasingly challenging. On the basis of their long tradition as global staples of the human diet and livestock feed, agricultural crops such as cereals will have a key role in satisfying this growing nutritional need. However, global agricultural area is limited, making it difficult to expand cereal production. Considering that approximately 15% of all cereals worldwide are lost due to microbial pests, the most sensible approach to combat this issue is to increase both food safety and sustainability to reduce economic losses. Pre- and postharvest microbial spoilage counts as one of the predominant factors in crop loss all over the world. Various strategies to prevent microbial contamination in the field have been investigated and reviewed. However, even the best management practices cannot completely eliminate the risk of contamination. Because of the permanent and ubiquitous presence of microorganisms and fungal spores in the environment, cereals always carry a certain microbial load when harvested. Additionally, climatic conditions, such as temperature and humidity that are not under human control may be crucial for contamination with moulds. Therefore, appropriate post-harvest crop treatment, before and during storage, is as important as pre-harvest strategies in the prevention of microbial spoilage.

References

- Andrews S, Pardoel D, Harun A, Treloar T. Chlorine inactivation of fungal spores on cereal grains. International Journal of Food Microbiology. 1997; 35(2):153-162. https://doi.org/10.1016/S0168-1605(96)01214-7.
- Bennett JW, Klich M. Mycotoxins. Clin. Microbiol. Rev. 2003; 16:497-516. doi: 10.1128/CMR.16.3.497-516.2003.
- Bullerman LB, Bianchini A. Food safety issues and the microbiology of cereals and cereal products. In N. Heredia, I. Wesley, & S. Garcia (Eds.), Microbiologically safe foods, 2009, 315-335. New York, U.S.A.: John Wiley & Sons.
- 4. Chandrasekaran S, Ramanathan S, Basak T. Microwave food processing – A review. Food Research International. 2013; 52(1):243-261.
- Cordain L. Cereal grains: Humanity's double-edged sword. World Review Nutrition Diet. 1999; 84:19-73. https://doi.org/10.1186/1550-2783-10-30
- 6. Delaquis P, Bach S. Resistance and sublethal damage. Produce contamination. In V.M. Gomez-Lopez (Ed.), Decontamination of fresh and minimally processed produce, 2012, 77-86. N.J., U.S.A.: Wiley-Blackwell Publishing.
- 7. Environmental Protection Agency. Wastewater Technology Fact Sheet - Ozone Disinfection, 1999. Retrieved from
 - https://www3.epa.gov/npdes/pubs/ozon.pdf
- 8. FAO (Food and Agriculture Organization of the United Nations). FAOSTAT Database, 2017. Retrieved from https://faostat.fao.org/site/567/default.aspx#ancor/

- Farkas J, Ehlermann DAE, Mohácsi-Farkas C. Food technologies: Food irradiation. Encyclopedia of Food Safety. 2014; 3:178-186. https://doi.org/10.1016/B978-0-12-378612-8.00259-6
- Greene AK, Guzel-Seydim ZB, Seydim, AC. Chemical and physical properties of ozone. In C. O'Donnell, B. K. Tiwary, P. J. Cullen, & R. G. Rice (Eds.), Ozone in food processing, 2012, 26-28. UK: Blackwell Publishing Ltd.
- Harris L, Shebuski J, Danyluk M, Palumbo M, Beuchat, L. Nuts, seeds and cereals. In M. Doyle & R. Buchanan (Eds.), Food microbiology, 2013, 203-221. Wash., U.S.A.: ASM Press.
- Jess S, Kildea S, Moody A, Rennick G, Murchie AK. Cooke LR *et al.* European Union policy on pesticides: Implications for agriculture in Ireland. Pest Management Science. 2014; 70(11):1646-1654. https://doi.org/10.1002/ps.3801
- Keklik NM, Krishnamurthy K, Demirci A. Microbial decontamination of food by ultraviolet (UV) and pulsed UV light. In A. Demirci & M. O. Ngadi (Eds.), Microbial decontamination in the food industry - Novel methods and applications, 2012, 344-369. Cambridge, UK: Woodhead Publishing Limited.
- Koehler P, Wieser H. Chemistry of cereal grains. In M. Gobetti & M. Gaenzle (Eds.), Handbook of sourdough biotechnology, 2013, 11-45. New York, USA: Springer.
- Laca A, Mousia Z, Díaz M, Webb C, Pandiella SS. Distribution of microbial contamination within cereal grains. Journal of Food Engineering. 2006; 72(4):332-338. https://doi.org/10.1016/j.jfoodeng.2004.12.012
- Liu Y, Pan X, Li J. A 1961-2010 record of fertilizer use, pesticide application and cereal yields: A review. Agronomy for Sustainable Development. 2015; 35: 83-93. https://doi.org/10.1007/s13593-014-0259-9
- Lung HM, Cheng YC, Chang YH, Huang HW, Yang BB, Wang CY *et al.* Microbial decontamination of food by electron beam irradiation. Trends in Food Science and Technology. 2015; 44(1):66-78. https://doi.org/10.1016/j.tifs.2015. 03.005
- Maftei NA, Ramos-villarroel AY, Nicolau, AI, Mart O, Soliva-fortuny, R. Pulsed light inactivation of naturally occurring moulds on wheat grain. Journal of the Science of Food and Agriculture. 2013; 94:721-726. https://doi.org/ 10.1002/jsfa.6324
- Magan N, Aldred D. Post-harvest control strategies: Minimizing mycotoxins in the food chain. Int. J. Food Microbiol. 2006; 119:131-139. doi: 10.1016/j.ijfoodmicro.2007.07.034.
- Niemira BA. Cold plasma decontamination of foods. Annual Review of Food Science and Technology. 2012; 3:125-142. https://doi.org/10.1146/annurev-food-022811-101132
- 21. Pitt JI, Hocking AD. Fresh and perishable foods. In Fungi and food spoilage, 2009, 395-403. N.Y., U.S.A.: Springer Science Business Media.
- 22. Reddy MVB, Raghavan GSV, Kushalappa AC, Paulitz TC. Effect of microwave treatment on quality of wheat seeds infected with Fusarium graminearum. Journal of Agricultural Engineering Research. 1998; 71:113-117.

- Sabillon L, Bianchini A, Stratton J, Rose DJ. Effect of saline organic acid solutions applied during wheat tempering on flour functionality. Cereal Chemistry. 2017; 94(3): 1-21.
- 24. Schluter O, Ehlbeck J, Hertel C, Habermeyer M, Roth A, Engel KH *et al.* Opinion on the use of plasma processes for treatment of foods. Molecular Nutrition and Food Research. 2013; 57(5):920-927. https://doi.org/10.1002/mnfr.201300039
- 25. Varga J, Kocsube S, Peteri Z, Vagvolgyi C, Toth B. Chemical, physical and biological approaches to prevent ochratoxin induced toxicoses in humans and animals. Toxins. 2010; 2(7):1718-1750. https://doi.org/10.3390/toxins2071718
- 26. Virto R, Manas P, Alvarez I, Condon S, Raso J. Membrane damage and microbial inactivation by chlorine in the absence and presence of a chlorine-demanding substrate. Applied Environmental Microbiology. 2005; 71(9):5022-5028. https://doi.org/10.1128/AEM.71.9.5022