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Abstract 
Distance measures are base for many statistical and data science methods with their applicability in 
various fields of science. Mixed variables data which is combination of continuous and categorical 
variables occurs frequently in fields such as medical, agriculture, remote sensing, biology, marketing, 
ecology etc., but a little work has been done for evaluating distance for such type of data. As there is not 
much literature available on distance measures for mixed data, therefore the fundamental sources that 
provide a comprehensive detail of a particular measure for mixed variables data were studied and 
reviewed in this paper. 
 
Keywords: distance measure, similarity measure, mixed data, heterogeneous data, k nearest neighbor, 
classification, discrimination 
 
Introduction 
Distance is defined as a quantitative degree of how far apart two objects are. A synonym for 
distance is dissimilarity. The calculation of distance between individuals or two or more 
groups also called populations arises in many areas such as biology, psychology, ecology, 
medical diagnosis and agriculture. Some statistical techniques also use the distance measures 
as their base like discriminant analysis, classification, clustering etc. Further distance measures 
are of vital importance in machine learning, they are base of many popular machine learning 
algorithms like k-nearest neighbor which is a supervised learning technique and k-means 
clustering which is an unsupervised learning technique. 
When all the variables are continuous, the most commonly used distance measure is the 
Euclidean distance, and the simple matching coefficient is most common when all the 
variables are categorical. Most of the researches which need calculation of distance are 
confined to continuous variables, but in real world the data is mostly a combination of 
continuous and categorical variables also called as mixed variables data or heterogeneous data. 
Vast literature on distance measures is available when the data is of only continuous nature 
(Cha, 2007) [3] or of only categorical nature (Boriah et al., 2008) [2], but when data is mix of 
both continuous and categorical type then most of the researchers either ignore its categorical 
nature and proceed with distance measures for continuous data or they transform the 
continuous data into categorical and proceed with distance measure for categorical data. But 
conversion of variables into the same scale involves loss of information.  
If one wishes to retain the variables in their original form, then a reasonable solution is to 
develop formulae specifically for mixed data types. Gordan (1981) [7] suggested to analyze 
separately for each variable type and then combining those results. The various distance 
measures that are available for mixed type of data are explained in detail in section 2, and 
section 3 concludes this paper. 
 
Distance measures for mixed variables 
We begin with some basic introduction to a distance measure. Distance basically indicates how 
different two vectors are, it is a function which takes two input vectors and returns a real 
positive number called the distance between two vectors. The value of this distance function 
should be small between similar pointsand large between dissimilar data points. The 
mathematical definition of a distance measure includes three requirements to be satisfied, 
which are defined as:  
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1. The distance between two points i and j is always a value 
greater than or equal to zero, that is i is not equal to j, 
then ݀௜௝ ൐ 0 

2. The distance between i and j is equal to zero if and only if 
i is equal to j, that is i = j, then	݀௜௝ ൌ 0. 

3. The distance between i and j is equal to the distance 
between j and i, that is݀௜௝ ൌ ௝݀௜, which implies that 
direction of distance measurement does not matter. 

 
Distances which satisfy these three requirements are known as 
distance measures, and those distance measures which also 
satisfy one additional requirement are called as distance 
metrics. This fourth requirement is defined as: 
1. Considering the presence of a third point r, the distance 

between i and j is always less than or equal to the sum of 
the distance between i and r and the distance between j 
and r, that is݀௜௝ ൑ ݀௜௥ ൅ ௝݀௥. This means the distance 
between two points cannot be larger than the sum of their 
distances from a third point. 

A concept which is closely related to the distance measure is a 
similarity measure which measures the similarity of two 
points. It is inversely related to distance function and given 
asݏ௜௝ ൌ 1 െ ݀௜௝. 
The next most appropriate starting point of this discussion of 
distance measure is the Euclidean distance. Euclidean 
distance is the generalization of the Pythagoras theorem to 
many dimensions and is one of the simplest distance 
measures. It is the standard reference for evaluating any other 
distance measure, and it is the base for many distance 
measure derived for mixed data. Its minimum value is 0 and 
there is no upper bound. The Euclidean distance is calculated 
as: 

݀௜௝ ൌ 	ට∑ ൫ݔ௜௞ െ ௝௞൯ݔ
ଶ௣

௞ୀଵ   

where p is the number of variables,ݔ௜௞ is the value ith 
observation on kth variable and ݔ௝௞is the value jthobservation 
on kth variable 
There are many weaknesses of this distance measure which 
makes it a poor choice. But many researchers still continue to 
useit because of its simplicity despite having many 
weaknesses. The Euclidean distance is popular when data is 
purely continuous, and next we have another popular distance 
measure when the data is purely categorical. 
The simple matching coefficient given by Sokal & Michener, 
1958 is the most widely known similarity measure for 
categorical variables. The distance can easily be calculated as 
the number of disagreements divided by the total number of 
variables. For observations i and j it is calculated as: 
 

݀௜௝ ൌ
∑ ሺ௫೔ೖି௫ೕೖሻ
೛
ೖసభ

௣
  

 
where p is the number of variables, ݔ௜௞ െ ௝௞ݔ ∈ ሼ0,1ሽ, 
௜௞ݔ െ ௝௞ݔ ൌ 0, if ݔ௜௞ ൌ ௜௞ݔ ௝௞, andݔ െ ௝௞ݔ ൌ 1, ifݔ௜௞ ്   .௝௞ݔ
Euclidean distance and matching coefficient are the most 
basic and popular measures for continuous and categorical 
data, respectively. These two measures contribute to the 
evolution of various distance measures for mixed data. The 
distance measures available for mixed variables can be 
categorized into two groups. First group includes the 
measures which are ensemble of various distance measures 
for different types of variables, and hence providing single 
distance measure for mixed variables. We named this type of 
distance measures as ensembled distance measures. Second 
group includes the distance measures which are exclusively 
defined for mixed type of variables, and this group is named 
as heterogeneous distance measures. In the figure 1, the 
distance measures for mixed variables are arranged in 
historical order. 

 

 
 

Fig 1: Chronological Table of Mixed Variables Distance Measures by Year 
 
The two groups defined by us are clearly indicated in the 
figure above, and next begins the comprehensive discussion 

of these mixed variables distance measures starting with the 
earliest one. 
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Gower’s coefficient 
The very first distance measure for calculating the distance 
between two observations, which had continuous and 
categorical variables measured simultaneously, was proposed 
by Gower in 1971 [8]. Gower (1971) [8] defined a general 
coefficient which measures the similarity between two units, 
and this coefficient includes several existing ones as special 
cases, hence can be used under different circumstances.  
The two individuals i and j can be compared on a variable k 
and assigned a score ݏ௜௝௞. The similarity between i and j is 
defined as the weighted average score taken over all possible 
comparisons: 
 

௜ܵ௝ ൌ
∑ ௦೔ೕೖఋ೔ೕೖ
೛
ೖసభ

∑ ఋ೔ೕೖ
೛
ೖసభ

  

 
 represents the possibility of making comparisons, that is	௜௝௞ߜ
 ௜௝௞=1 when variable k can be compared for i and j, whichߜ
means no missing value for both. Sometimes no comparison 
is possible because of missing observation or in case of 
dichotomous variable where the agreement (0, 0) is 
considered non informative, in such cases ߜ௜௝௞ is 0. 
Compliment of ௜ܵ௝ is the distance measure, ݀௜௝ ൌ 1 െ ௜ܵ௝ 
The scores ݏ௜௝௞ are assigned as: 
 
a) Binary variables: If + is presence of character and – is its 
absence, then validity and score assigned to each combination 
is given as 
 

 Values of character k 
Individual i 

 j 
+ + - - 
+ - + - 

 ௜௝௞ݏ
 ௜௝௞ߜ

1 0 0 0 
1 1 1 0 

 
 ௜௝௞ is unityݏ ,௜௝௞=0 when i and j are considered differentݏ
when they have some degree of similarity.  
 
b) Categorical variables: value are, 
௜௝௞ݏ ൌ 1, if the two individuals i and j agree in kth character  
௜௝௞ݏ ൌ 0, if they differ 
 
c) Continuous variables: for continuous variables with values 
 ௡ of character k for the total sample of nݔ,.……,ଶݔ ,ଵݔ
individuals, 
 

௜௝௞ݏ ൌ 1 െ
ห௫೔ି௫ೕห

ோೖ
  

 
ܴ௞is the range of character k and may be the total range in the 
population, when ݔ௜=ݔ௝ then ݏ௜௝௞=1 and ݏ௜௝௞is minimum when 
 .௝ are at opposite ends of their rangeݔ ௜ andݔ
Properties: 
 ௜ܵ௝ranges between 0 and 1, a value of 1 means that two 

individuals differ in no character and 0 means they differ 
maximally in all their variables. 

 When ߜ௜௝௞=0 for all characters, ௜ܵ௝ is undefined and when 
all comparisons are possible ∑ ௜௝௞ߜ

௩
௞ୀଵ ൌ  the total ,݌

number of variables 
 When there are no missing values, ௜ܵ௝ is positive semi-

definite. 
 

Gower coefficient is suitable for including in computer 
programs because it can cope up with different data types 
without any reprogramming. It has been found to be flexible 
to handle nearly all forms of character coding so far 
encountered, and unlike many coefficients does not require 
any recoding for quantitative characters. The important 
property of this similarity coefficient is the positive semi 
definite property, which allows numerical methods to be used 
with confidence that operate only on positive semi definite 
matrices provided there are no missing values. Missing values 
cause the similarity matrix to lose its positive semi definite 
property (Gower, 1971) [8]. 
Gower also suggested incorporating weights in the similarity 
coefficient, but deciding for weights is more difficult. 
According to him most simple weighting gives a constant 
weight to each character. But differences in characters may be 
considered more important than agreement, so weight for 
character k should be a function of character values ݔ௜௞ and 
 ௝௞ for individual i and j, and this functional form can beݔ
different for different characters. Many authors suggested 
different weights to the different variables for Gower’s 
distance (Chae et al., 2006) [4].  
Though Gower’s work was directed towards taxonomists but 
it has impacted a much larger audience of various fields. His 
general coefficient has been used in different fields like 
medicine, genetics etc. (Cuadras, 1992b; Cuadras et al., 1997; 
Mohammadi and Prasanna, 2003) [5, 6, 14]. 
 
Huang’s distance  
Huang (1997) [11] defined a distance measure for mixed 
variable data by combining the square Euclidean distance for 
numeric variables and simple matching distance for 
categorical variables. 
 

݀௜௝ ൌ ݀௜௝
ே ൅ ௜௝݀ߛ

஼   
 
where݀௜௝

ே  is the distance between numeric variables,݀௜௝
஼  is the 

distance between categorical variables, and ߛ is the weight for 
categorical variables. 
 

݀௜௝
ே ൌ ∑ ൫ݔ௜௞ െ ௝௞൯ݔ

ଶ௉೙
௞ୀଵ   

 

݀௜௝
஼ ൌ ∑ ;௜௞ݔ௖ሺߜ ௝௞ሻݔ

௉೙
௞ୀଵ   

 
here ௡ܲ are the number of numeric and ௡ܲ are the number of 
categorical variables, 
;௜௞ݔ௖൫ߜ  ௝௞൯is the simple matching distance between object iݔ
and j in the categorical variable k and given as, 
 

;௜௞ݔ௖ሺߜ ௝௞ሻݔ ൌ
௜௞ݔ	݄݊݁ݓ,0 ൌ ௝௞ݔ
௜௞ݔ	݄݊݁ݓ,1 ് ௝௞ݔ

  

 
The Huang (1997) [11] distance between objects i and j is 
calculated by 
 

݀௜௝ ൌ ∑ ሺݔ௜௞ െ ௝௞ሻଶݔ
௉೙
௞ୀଵ ൅ ߛ ∑ ;௜௞ݔ௖ሺߜ ௝௞ሻݔ

௉೎
௞ୀଵ   

 
γis the weight for categorical attributes, and is given as 
 

ߛ ൌ
∑ ௦ೖ

మು೙
ೖసభ

௉೙
  



 

~ 341 ~ 

International Journal of Chemical Studies http://www.chemijournal.com

It is introduced to avoid favoring either type of attributes. The 
choice of γ is dependent on the distributions of numerical 
attributes and generally it is taken as proportional to the 
average standard deviation of numeric attributes. 
 
HEOM and HVDM  
Stanfill and Waltz in 1986 introduced the distance measure 
for nominal variables called asoverlap distance which is the 
simplest measure of dissimilarity between two objects and it 
is simply the number of variables that are different between 
two objects, and it is given as 
 

,௜ݔሺ݌݈ܽݎ݁ݒܱ ௝ሻݔ ൌ ൜
௜ݔ	݂݅	0 ൌ ௝ݔ
݁ݏ݅ݓݎ݄݁ݐ݋	1

  

 

࢐࢏ࢊ ൌ ∑ ൫࢑࢏࢞ ് ൯࢑࢐࢞
࢖
ୀ૚࢑   

 
Although this measure was simple but it was poor metric 
because it assigns an equal weight to all the variables and 
classes. Then, Stanfill and Waltz took a statistical approach to 
this problem by defining a new distance measure called Value 
Difference Metric (VDM). 
 

࢐࢏ࢊ ൌ ∑ ∑ ቤ
ࢉ,࢏࢞,࢑ࡺ

࢏࢞,࢑ࡺ
െ

ࢉ,࢐࢞,࢑ࡺ

࢐࢞,࢑ࡺ
ቤ࡯

ୀ૚ࢉ
࢖
ୀ૚࢑   

 
where,	 ௞ܰ,௫೔,௖ is the number of objects that had value ݔ௜ for 
the variable k and an output class c 
௞ܰ,௫೔is the number of objects that had value ݔ௜ for the variable 

k 
௞ܰ,௫ೕ,௖is the number of objects that had value ݔ௝ for the 

variable k and an output class c 
௞ܰ,௫ೕis the number of objects that had value ݔ௝ for the variable 

k 
Value difference metric statistically determine the distance of 
two objects based on the proportion of the number of times 
their particular attributes are in the same class. Overlap 
distance measure and value difference metric handle only 
categorical variables and fail for continuous variables, 
because in continuous data there are very few overlaps. 
Wilson and Martinez in 1997 [21] extended the overlap and 
VDM measure for the situations where the data ismix of 
categorical and continuous variables. They extended the 
overlap measure with the Heterogeneous Euclidean Overlap 
Metric (HEOM), which is defined as: 
 

ܯܱܧܪ ൌ ∑ ݀௜௝
ଶ௣

௞ୀଵ   
 

݀௜௝ ൌ ∑ ቊ
,௜ݔ൫݌݈ܽݎ݁ݒ݋ ݈ܽܿ݅ݎ݋݃݁ݐܽܿ	ݏ݅	݁ݐݑܾ݅ݎݐݐܽ	݄݁ݐ	௝൯݂݅ݔ

,௜ݔ൫݂݂݅݀݉ݎ݋݊ ݏݑ݋ݑ݊݅ݐ݊݋ܿ	ݏ݅	݁ݐݑܾ݅ݎݐݐܽ	݄݁ݐ	௝൯݂݅ݔ
௣
௞ୀଵ   

 
where, ݌݈ܽݎ݁ݒ݋൫ݔ௜,  ௝൯ is same as defined above, andݔ
 

,௜ݔ൫݂݂݅݀݉ݎ݋݊ ௝൯ݔ ൌ
ห௫೔ି௫ೕห

௥௔௡௚௘ೖ
  

 
The contribution of continuous variable is defined by 
thenormdiff function, ݁݃݊ܽݎ௞ denotes the range of values of 
the kth variable. To mix continuous and categorical attributes, 
the continuous variables are normalized so that they do not 
have more or less weight than categorical attributes, as no 

categorical variable in overlap measure could contribute more 
than one to the distance. 
Wilson and Martinez (1996) [20] discussed several possible 
ways to extend VDM to the continuous variables. First was to 
discretize the continuous variables, but by treating continuous 
variables as categorical a lot of information is lost. Then in 
1997 they came up with another alternative to VDM which is 
called as Heterogeneous Value Difference Metric (HVDM) 
and is defined as: 
 

,௜ݔ൫ܯܦܸܪ ௝൯ݔ ൌ ට∑ ݀௜௝
ଶ௣

௞ୀଵ   

 

݀௜௝ ൌ ൞

݊ݓ݋݊݇݊ݑ	ݏ݅	௝ݔ	ݎ݋	௜ݔ	݂݅	1

,௜ݔ൫݉݀ݒ_݀݁ݖ݈݅ܽ݉ݎ݋݊ ݈ܽܿ݅ݎ݋݃݁ݐܽܿ	ݏ݅	݁ݐݑܾ݅ݎݐݐܽ	݄݁ݐ	௝൯݂݅ݔ

,௜ݔ൫݂݂݅݀_݀݁ݖ݈݅ܽ݉ݎ݋݊ ݏݑ݋ݑ݊݅ݐ݊݋ܿ	ݏ݅	݁ݐݑܾ݅ݎݐݐܽ	݄݁ݐ	௝൯݂݅ݔ
 

 

where, ݊݀݁ݖ݈݅ܽ݉ݎ݋_݂݂݀݅൫ݔ௜, ௝൯ݔ ൌ
ห௫೔ೖି௫ೕೖห

ସఙೖ
, and ߪ௞ is 

the standard deviation of continuous variable k. whereas 
several possibilities for normalized_vdm has been studied by 
the authors: 
 

,௜ݔ1൫݉݀ݒ_݀݁ݖ݈݅ܽ݉ݎ݋݊ ௝൯ݔ ൌ ∑ ቤ
ேೖ,ೣ೔,೎

ேೖ,ೣ೔
െ

ேೖ,ೣೕ,೎

ேೖ,ೣೕ
ቤ஼

௖ୀଵ   

 

,௜ݔ2൫݉݀ݒ_݀݁ݖ݈݅ܽ݉ݎ݋݊ ௝൯ݔ ൌ ඨ∑ ቤ
ேೖ,ೣ೔,೎

ேೖ,ೣ೔
െ

ேೖ,ೣೕ,೎

ேೖ,ೣೕ
ቤ
ଶ

஼
௖ୀଵ   

 
Wilson & Martinez (1997) [21] tried HVDM over 15 different 
datasets and found that normalized_vdm2 generalize the best. 
They compared it with HEOM and Euclidean, and HVDM 
was found to be superior. 
 
Podani’s distance 
The Gower’s general coefficient does not incorporate ordinal 
variables, which is a serious shortcoming if the mixed data 
sets have ordinal type variables. So as a solution, Podani in 
1999 [15] extended Gower’s general coefficient of similarity to 
ordinal characters. For ordinal variablesߜ௜௝௞is the same as 
above and all ݔ௜௞are replaced by their ranks ݎ௜௞determined 
over all objects, and then 
 

௜௝௞ݏ ൌ 1 െ
ห௥೔ೖି௥ೕೖห

௠௔௫ሼ௥ೖሽି௠௜௡ሼ௥ೖሽ
  

 
The idea here is to involve differences in ranks for two items 
within the same rank order, which is somewhat analogous to 
taking differences between the ranks for the same item in two 
orders, as in Spearman’s rank correlation. Standardization by 
the range of ranks for each variable ensures comparability 
with the other variable types. 
If ties appear, then correction terms are added to both the 
denominator and the numerator, given as 
 

௜௝௞ݏ ൌ 1 െ
ห௥೔ೖି௥ೕೖหି

൫೅೔ೖషభ൯
మ

ି
ቀ೅ೕೖషభቁ

మ

௠௔௫ሼ௥ೖሽି௠௜௡ሼ௥ೖሽି
ቀ೅ೖ,೘ೌೣషభቁ

మ
ି
ቀ೅ೖ,೘೔೙షభቁ

మ

  

 
௜ܶ௞ is the number of objects which have the same rank score 

for variable k as object i(including i itself), ௝ܶ௞ is the number 
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of objects which have the same rank score for variable k as 
object j(including j itself), 
 ,௝௞ are the maximum and minimum ranks for variable kݎ௜௞andݎ
respectively, 
௞ܶ,௠௔௫is the number of objects with the maximum rank, and 

௞ܶ,௠௜௡ is the number of objects with the minimum rank. 
A distance coefficient alternative to Gower’s index was given 
by Podani (2000) [16]. 
  

݀௜௝ ൌ ඨ∑ ௜௝௞ߜ ൬
௫೔ೖି௫ೕೖ
௪೔ೕೖ

൰
ଶ

௣
௞ୀଵ   

 
whereߜ௜௝௞= 0 if comparison of objects i and j for variable k is 
invalid for lack of data, otherwise ߜ௜௝௞= 1. 
For different variables ݓ௜௝௞ is given as: 
a) For binary variables: ݓ௜௝௞= 1. 
b) for nominal variables: ݓ௜௝௞ = ݔ௜௞ െ ௜௞ݔ ௝௞ifݔ ്  ௝௞ݔ
௜௞ݔ ௜௝௞= 1 ifݓ ൌ  ௝௞ݔ
c) for continuous variables: ݓ௜௝௞= ݉ܽݔሼݔ௜௞ሽ െ ݉݅݊൛ݔ௝௞ൟ 
d) for ordinal variables: ݓ௜௝௞= ݉ܽݔሼݎ௞ሽ െ ݉݅݊ሼݎ௞ሽ 
 
Wishart’s distance 
Wishart in 2003 proposed a distance measure which was 
similar to Gower’s measure but with slight modification. He 
used variance of the continuous variable in the score part such 
that the distance is given as: 
 

݀௜௝ ൌ ඨ∑ ௜௝௞ߜ ൬
௫೔ೖି௫ೕೖ
௪೔ೕೖ

൰
ଶ

௣
௞ୀଵ   

 
whereߜ௜௝௞= 0 if comparison of objects i and j for variable k is 
not possible, otherwise ߜ௜௝௞= 1. 
For different variables ݓ௜௝௞ is given as: 
a. For binary/categorical variables: ݓ௜௝௞= 1 if ݔ௜௞ ൌ  ௝௞, 0ݔ

otherwise 
b. For continuous variables: ݓ௜௝௞= ݏ௞ when k is numerical 

variable 
 
Ahmad & dey’s distance 
Ahmad and Dey (2007) [1] proposed a distance measure which 
works well with mixed data, they somewhat modified the 
Huang’s (1997) [11] distance measure. According to them most 
of the distance measures do not consider the distribution of 
values in the data set while computing the distance between a 
two categorical variables, which is naturally captured in case 
of continuous variables. They also illustrated that distance 
between values cannot be considered strictly binary because 
the values which co-occur together in same group should be 
more similar to each other than they were to the values 
occuring in different groups. The distance function of Ahmad 
and Dey used squared Euclidean distance between data 
objects for continuous variables and the distance between two 
categorical values is computed as function of their overall 
distribution and co-occurrence with other variables. 
 

݀௜௝ ൌ ∑ ሺݔ௜௞ െ ௝௞ሻଶݔ
௉೙
௞ୀଵ ൅ ∑ ;௜௞ݔ௖ሺߜ ௝௞ሻݔ

௉೎
௞ୀଵ   

 
whereߜ௖ሺݔ௜௞;  ௝௞ሻ is the co-occurrence distance betweenݔ
categorical values.  

Huang’s measure used a binary valued distance for 
categorical variables and all categorical variables were 
weighted by a user defined parameter which controls the 
contribution of categorical variables to the distance function. 
But in Ahmad and Dey’s measure the contribution of a 
categorical variable is inherent in the distance measure itself 
and is a function of co-occurrence of values. Thus, weighing 
values were extracted from the variable value distributions 
within the data. Also, the binary and categorical variables are 
not considered separately and the co-occurrence distance is 
based on both of these variables that are binary and 
categorical variables. 
 
Harikumar and PV’s distance 
Harikumar and PV (2015) [9] proposed a generalized distance 
function for mixed data variables in the form of triple terms, 
which consists of three different distance measures for 
numeric, categorical and binary data types. According to them 
a small change in the dataset may change the results 
drastically if Euclidean distance is used. So, they used 
Manhattan distance for distance calculation because it is more 
flexible, robust and resistant to the outliers (Hopcroft & 
Kannan, 2013) [10]. Hamming distance was used for binary 
variables, and for categorical variables they used co-
occurrence distance as defined by Ahmad and Dey (2007) [1]. 
Categorical variables were treated separately from binary 
variables due to the variations in their probability distributions 
unlike Ahmad and Dey who used same measure for binary 
and categorical variables. Another reason for treating the 
binary and categorical variables separately was that if binary 
variables were treated separately then the complex 
computations of calculating the probability of each variable 
value could be avoided.  
Proposed generalized distance function in the form of triplet 
is given as:  
 
݀௜௝ ൌ ∑ หݔ௜௞ െ ௝௞หݔ

௉೙
௞ୀଵ ൅ ∑ ;௜௞ݔ௖ሺߜ ௝௞ሻݔ

௉೎
௞ୀଵ ൅ ∑ ;௜௞ݔ௕ሺߜ ௝௞ሻݔ

௉್
௞ୀଵ   

 
Here ߜ௕ሺݔ௜௞; ௝௞ሻݔ ൌ 0 for ݔ௜௞ ൌ  ௝௞ and 1 otherwise by usingݔ
Hamming distance. 
So, the measure has three components, one for handling 
numeric variables, second for handling categorical variables 
and third for handling binary variables. For each component, 
lower value of distance indicates higher similarity. 
Both Ahmad & Dey (2007) [1] and Harikumar & PV (2015) [9] 
used normalization scheme given by Witten & Frank (2000) 

[23] for numeric variables, and normalized value was given as: 
 

݀௜௝ ൌ
௫ି௫೘೔೙

௫೘ೌೣି௫೘೔೙
  

 
Packages in R for distance calculation 
The distance measures which are discussed in this paper can 
be easily calculated in R software using some packages. The 
Gower’s distance can be calculated using “gower” package in 
R, while the package “kmed” can be used to find the Huang’s, 
Podani’s, Wishart’s, Ahmad & Dey’s and Harikumar & PV’s 
distance. The “UBL” package can be used to find the HEOM 
and HVDM measures. 
Among the available distance measures there is no measure 
which can unanimously be considered as winner and this area 
needs more research. Hence no single distance measure is 
always superior or inferior because a distance measure that 
works well for one problem may be not good for other 
problem (Boriah et al., 2008; Veldon et al., 2018) [2, 19]. 
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Conclusions 
This paper summarizes and provides comprehensive detail of 
various distance measures that can deal with mixed type of 
data including how the existing distance measures were 
modified to deal with mixed variables. Since such type of real 
world data occurs commonly in various fields, it is important 
to consider these distance measures. It will give an insight to 
the readers to take an informed decision in identifying the 
available options of distance measure and then selecting the 
appropriate measure for their specific problem.  
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