International Journal of Chemical Studies

P-ISSN: 2349–8528 E-ISSN: 2321–4902 www.chemijournal.com IJCS 2020; 8(6): 3073-3076 © 2020 IJCS Received: 27-10-2020 Accepted: 29-11-2020

A Aliveni

Department of Agronomy, Agricultural College, Bapatla, Andhra Pradesh, India

B Venkateswarlu

Department of Agronomy, Agricultural College, Bapatla, Andhra Pradesh, India Economic evaluation of finger millet under different crop geometries and nutrient management practices

A Aliveni and B Venkateswarlu

Abstract

Field experiment with finger millet was conducted at Agricultural college farm, Bapatla during the *kharif* seasons of 2018 and 2019. The experimental design was split plot with three replications. The trial comprised of three crop geometries with different age of seedlings (30x10 cm with 30 days old seedlings, 30x30 cm with 15 days old seedlings and 45x45 cm with 15 days old seedlings) in main plots and seven nutrient management practices (S₀: absolute control, S₁: FYM @ 10 tonnes ha⁻¹ + application of *dravajeevamrutham*, S₂: FYM @ 10 tonnes ha⁻¹ + application of *dravajeevamrutham*, S₃: FYM @ 10 tonnes ha⁻¹ + 100% RDF, S₄: FYM @ 10 tonnes ha⁻¹ + 100% RDF along with wooden log treatment, S₅: FYM @ 10 tonnes ha⁻¹ + 125% RDF, S₆: FYM @ 10 tonnes ha⁻¹ + 125% RDF along with wooden log treatment) in subplots. The highest grain and straw yields, gross and net returns and return per rupee investment were observed with closer spacing of 30x10 cm, transplanted with 30 days old seedlings. Among the nutrient management practices tried application of FYM @ 10 tonnes ha⁻¹ + 125% RDF along with wooden log treatment practices tried application of FYM @ 10 tonnes ha⁻¹ + 125% RDF along with wooden log treatment practices tried application of FYM @ 10 tonnes ha⁻¹ + 125% RDF along with wooden log treatment practices tried application of FYM @ 10 tonnes ha⁻¹ + 125% RDF along with wooden log treatment practices tried application of FYM @ 10 tonnes ha⁻¹ + 125% RDF along with wooden log treatment practices tried application of FYM @ 10 tonnes ha⁻¹ + 125% RDF along with wooden log treatment practices tried application of FYM @ 10 tonnes ha⁻¹ + 125% RDF along with wooden log treatment had superiority in grain and straw yields, gross and net returns and return per rupee investment compared to other nutrient management practices.

Keywords: Yield, gross return, net return, return per rupee investment, crop geometry, nutrient management practice and finger millet

Introduction

Millets are a major food source in arid and semiarid parts of the world and excellent sources of carbohydrates, protein, fatty acids, minerals, vitamins, dietary fiber and polyphenols. Among different millets, finger millet (*Eleusine coracana* L. Gaertn.), is a major staple crop among tribal farming communities in developing countries like India, which is highly productive and can thrive under a variety of harsh environmental conditions. It possess superior nutritional properties and referred to as a nutricereal or as a nutraceutical crop and is seen as a potential solution for addressing malnutrition and hidden hunger worldwide. Despite of the great value associated with this nutri-crop, there has been decline both in area and in production of the crop. Some of the primary reasons are poor crop management practices like use of low quality seeds, higher seed rate, broadcasting method of sowing leading to low plant population, delayed transplanting, lower fertilizer use efficiency etc.

Among the modern agro-management practices, suitable planting method and fertilizer application are imperative for boosting the growth and production of finger millet especially under rainfed condition. An ideal crop geometry is essential for obtaining optimum plant stand in the field as the yield of a crop depends on the final plant density with effective utilization of growth resources. Conjunctive use of chemical fertilizers and organic manures is important to maintain and sustain soil fertility and crop productivity. So, under these circumstances it is imperative to study various crop geometries and nutrient management practices to better understand the resource use efficiencies particularly of economic efficiency.

Materials and Methods

A Field trial was conducted with finger millet variety (VR-847) at Agricultural college farm, Bapatla during the *kharif* seasons of 2018 and 2019. The soil of experimental site was sandy clay loam in texture with slightly alkaline reaction, low organic carbon content, low available nitrogen and medium in available phosphorous and potassium.

The experiment was laid in split plot design having 21 treatments replicated thrice.

The treatments comprised of two factors, viz., crop geometries with different age of seedlings

Corresponding Author: A Aliveni Department of Agronomy, Agricultural College, Bapatla, Andhra Pradesh, India (M₁: 30x10 cm with 30 days old seedlings, M₂: 30x30 cm with 15 days old seedlings and M₃: 45x45 cm with 15 days old seedlings) and seven nutrient management practices (S₀: absolute control, S₁: FYM @ 10 tonnes ha⁻¹⁺ application of dravajeevamrutham, S₂: FYM @ 10 tonnes ha⁻¹ + application of *dravajeevamrutham* along with wooden log treatment, S₃: FYM @ 10 tonnes ha⁻¹ + 100% RDF, S₄: FYM @ 10 tonnes $ha^{-1} + 100\%$ RDF along with wooden log treatment, S₅: FYM @ 10 tonnes ha⁻¹ + 125% RDF, S₆: FYM @ 10 tonnes ha⁻¹ + 125% RDF along with wooden log treatment. Yield of finger millet was calculated based on the yield obtained from each net plot and further converted to kg ha-1. The cost of cultivation for each treatment was worked out. Similarly, gross returns were calculated based on existing rates of finger millet. The net return from each treatment was arrived by deducting the cost of cultivation from the gross return on ha⁻¹ basis. Return per rupee investment for all the treatments was worked out on the basis of gross return in terms of rupees and the cost of treatments using the following formula

Gross return (₹ ha⁻¹)

Return per rupee investment = -

Cost of cultivation (₹ ha⁻¹)

Results

Grain and Straw yields

The current findings are also supported by the study conducted by Borkar *et al.* (2008) ^[2] who opined that though wider spacing favoured most of the yield attributes compared to closer spacing, it could not compensate the grain yield on a unit area basis exhibiting superiority of closer spacing over wider spacing. Since the number of plants per unit area are higher in closer spacing, compared to wider spacing, this reflected in realizing greater grain yield ha⁻¹. Shinggu and Gani (2012) ^[12] recorded higher grain yield at 10 and 15 cm spacing and this could be attributed to higher plant population per unit area and reduced competition from weeds due to closer spacing. Though higher number of tillers hill⁻¹ were recorded at wider spacing, this could not compensate for more

number of plants per unit area. Similar higher straw yields at closer spacing was also reported by (Rajesh, 2011)^[9], Kalaraju *et al.* (2011)^[6] and Anitha (2015)^[1].

With regard to the nutrient management practices, application of FYM @ 10 tonnes ha⁻¹ + 125% RDF along with wooden log treatment (S₆) recorded the highest grain and straw yields and statistically comparable with 125% of RDF + FYM (S₅). Sustained release of available nutrients during crop growth period was found to increase yield substantially (Raniperumal *et al.* 1991, Goudar, 2014 and Senthilkumar *et al.* 2018) ^[10, 3, 11].

Economics

The highest gross return, net return and return per rupee investment were recorded in closer spacing of $30x10 \text{ cm}(M_1)$, which was significantly superior to the rest of the treatments. Higher grain and straw yields recorded in closer spacing might attributed to higher gross return, net return and return per rupee investment. The current results are in accordance with the earlier findings of Khafi et al. (2000)^[5] and Hebbal (2017) ^[4]. Among the nutrient management treatments, combined use of organic and inorganic sources of nutrients progressively improved the gross return, net return and return per rupee investment of finger millet and the highest gross return, net return and return per rupee investment were produced with application of 125% RDF + FYM 10 tonnes ha⁻¹ along with wooden log treatment (S_6) which was significantly superior to rest of the treatments and comparable with S_5 and S_4 treatments. This might be attributed to the higher grain and straw yields recorded by the integrated nutrient management, ultimately resulting in higher economics. The application of organics alone and absolute control did not register higher yield which finally resulted in lower economic returns. The present findings are in similarity with the earlier findings by Mathew *et al.* (1994)^[7], Patel & Patel (2002)^[8] and Hebbal (2017)^[4] who reported that the economic returns were increased with conjunctive use of FYM + RDF. Interaction effect of crop geometries and nutrient management treatments was significant with net return and closer spacing of 30x10 cm (M1) and application of 125% RDF along with FYM @ 10 tonnes ha⁻¹ + wooden log treatment (S_6) registered the highest net return and the lowest in wider spacing of 45x45 cm with no fertilizer application (M_3S_0) . The highest population per unit area along with the highest fertility level resulted in the highest yield and in turn the highest net return. The present results are in close confirmation with the earlier reports of Hebbal (2017)^[4].

Table 1: Yield of finger millet as influenced by cr	op geometry and nutrient management practi	ces during <i>kharif</i> , 2018-19 and 2019-20			
	Crain vield (kg ha·l)				

	UTan	i yiciu (kg iii	.)	501	na)								
Treatments	2018-19	2019-20	Pooled data	2018-19	2019-20	Pooled data							
Crop geometry													
M_1 - 30×10cm with 30 days old seedlings	2668	2773	2721	6538	6722	6630							
M_2 - 30×30cm with 15 days old seedlings	2258	2363	2310	5757	5896	5827							
M ₃ - 45×45cm with 15 days old seedlings	2079	2172	2126	4350	4504	4427							
S.Em±	91.61	48.79	61.18	147.14	200.83	177.42							
CD (p = 0.05)	360	192	240	578	789	697							
CV(%)	17.98	9.18	11.75	12.15	16.13	14.45							
	Nutrient m	anagement											
S ₀ -Absolute control	1213	1324	1268	2483	2520	2502							
S ₁ - FYM @ 10 tonnes ha ⁻¹ + $dravajeevamrutham$	1765	1837	1801	3603	3738	3671							
S ₂ - S ₁ + passing wooden log	2051	2102	2076	4884	4944	4914							
S ₃ - FYM @ 10 tonnes ha ⁻¹ + 100% RDF	2521	2668	2595	6131	6338	6234							
S ₄ - S ₃ + passing wooden log	2761	2884	2822	6358	6737	6547							
S ₅ - FYM @ 10 tonnes ha ⁻¹ + 125% RDF	2955	3046	3000	7652	7770	7711							
S ₆ - S ₅ + passing wooden log	3079	3191	3135	7729	7903	7816							

International Journal of Chemical Studies

S.Em±	136.30	128.22	98.73	325.33	388.27	320.07						
CD (p = 0.05)	391	368	283	933	1114	918						
CV (%)	17.51	15.79	12.42	17.59	20.41	17.06						
Interaction												
M x S	NS	NS	NS	NS	NS	NS						
S x M	NS	NS	NS	NS	NS	NS						

 Table 2: Cost of cultivation (₹ha⁻¹), gross return (₹ha⁻¹), net return (₹ha⁻¹) and return per rupee invested of finger millet as influenced by crop geometry and nutrient management practices during *kharif*, 2018-19 & 2019-20 and in pooled data

		201	8-19			201	9-20		Pooled data					
Treatments	Cost of cultiva- tion	Gross return	Net return	Return per rupee invested	Cost of cultiva- tion	Gross return	Net return	Return per rupee invested	Cost of cultiva- tion	Gross return	Net return	Return per rupee invested		
M_1 - 30×10 cm with 30 days old seedlings	40952	83840	42888	2.02	42332	94066	51734	2.19	41642	88953	47311	2.11		
M_2 - 30×30 cm with 15 days old seedlings	38042	71161	33119	1.85	39422	80319	40897	2.02	38732	75740	37008	1.93		
M_{3} - 45×45 cm with 15 days old seedlings	36464	64582	28117	1.75	37844	72919	35075	1.91	37154	68750	31596	1.83		
S.Em±	-	2657.67	1309.85	0.03	-	2079.87	1624.33	0.03	-	1784.44	1619.08	0.03		
CD (p = 0.05)	-	10435	5143	0.12	-	8167	6378	0.13	-	7007	6357	0.11		
CV (%)	-	16.64	17.29	7.48	-	11.56	17.49	7.71	-	10.51	19.20	6.81		
	Nutrient management													
S ₀ -Absolute control	26777	37634	10857	1.41	28157	44211	16054	1.57	27467	40922	13455	1.49		
S ₁ - FYM @ 10 tonnes ha ⁻¹ + dravajeevamrutham	39977	54735	14758	1.37	41357	61609	20252	1.49	40667	58172	17505	1.43		
S_2 - S_1 + passing wooden log	40877	64302	23425	1.57	42257	71147	28890	1.68	41567	67725	26157	1.63		
S ₃ - FYM @ 10 tonnes ha ⁻¹ + 100% RDF	39547	79176	39629	1.99	40927	90381	49454	2.19	40237	84778	44542	2.09		
S ₄ - S ₃ + passing wooden log	40447	86345	45898	2.12	41827	97573	55746	2.32	41137	91959	50822	2.22		
S ₅ - FYM @ 10 tonnes ha ⁻¹ + 125% RDF	40439	93245	52806	2.30	41819	103703	61884	2.48	41129	98474	57345	2.39		
S ₆ - S ₅ + passing wooden log	41339	96922	55583	2.34	42719	108419	65700	2.53	42029	102670	60641	2.44		
S.Em±	-	4089.78	2078.88	0.11	-	4459.38	2548.36	0.10	-	3823.52	2295.24	0.08		
CD (p = 0.05)	-	11730	5963	0.32	-	12790	7309	0.29	-	10966	6583	0.23		
CV (%)	-	16.76	17.97	18.10	-	16.23	17.96	14.82	-	14.74	17.82	12.47		
	Interaction													
M x S		NS	S	NS		NS	S	NS		NS	S	NS		
S x M		NS	S	NS		NS	S	NS		NS	S	NS		

 Table 2a: Interaction between crop geometry and nutrient management practices on net return (₹ha⁻¹) of finger millet during *kharif*, 2018-19 & 2019-20 and in pooled data

Treatmo	Treatmo Nutrient management practices						Mea	Nutrient management practices								a Nutrient management practices								
nte			(20	18-19)			n	(2019-20)							n	(Pooled data)							n
nts	S ₀	S_1	S_2	S ₃	S 4	S 5	S 6		S ₀	S 1	S_2	S ₃	S 4	S 5	S 6		S ₀	S 1	S_2	S 3	S 4	S 5	S 6	
M	1057	15150	2667	5676	6474	6299	6331	4288	1798	15907	3967	7452	7409	6283	7718	5173	1428	15402	3317	6564	6942	6291	7025	4731
111	2	13139	0	0	4	8	3	8	8	13627	4	7	7	9	7	4	0	13495	2	3	1	8	0	1
м	1168	15202	2164	3362	4026	5339	5591	3311	1688	26401	2595	3812	4188	6757	6946	4089	1428	20052	2379	3587	4107	6048	6269	3700
M ₂	9	15303	2	8	1	2	6	9	0	26401	1	3	3	8	4	7	5	20852	6	5	2	5	0	8
14	1030	12012	2196	2850	3268	4202	4751	2811	1329	10500	2104	3571	5125	5523	5044	3507	1180	1 < 1 7 0	2150	3210	4197	4863	4898	3159
M 3	9	13812	4	0	9	8	9	7	3	18529	5	4	8	5	9	5	1	16170	4	7	4	2	4	6
	1085	1 4750	2342	3962	4589	5280	5558		1605	20252	2889	4945	5574	6188	6570		1345	17505	2615	4454	5082	5734	6064	
Mean	7	14758	5	9	8	6	3		4	20252	0	4	6	4	0		5	1/505	7	2	2	5	1	
	с Б.	CD	CU						C Em	CD	CU						C E	CD	CV					
	S.Em	(p=0.0							S.Em	(p=0.0							S.Em	(p=0.0						
	±	5)	(%)						±	5)	(%)						±	5)	(%)					
	1210	5142	17.2						1.004	(270	17.4						1 < 1 0	(257	19.2					
Main Plot	1310	5145	9						1624	03/8	9						1019	0357	0					
	2070	50(2	17.9	1					25 40	7200	17.9	1					2205	(502	17.8	1				
Sub Plot	2079	5963	7						2548	/309	6						2295	6583	2					
Interactio																								
n																								
M x S	3601	10327		1					4414	12660		1					3975	11402		1				
S x M	5471	15963							6717	19608	1						6142	18010	1					

Fig 1: Interaction between crop geometry and nutrient management practices on net return (₹ha⁻¹) of finger millet during *kharif*, 2018-19 & 2019-20 and in pooled data

Conclusion

In conclusion from the study, it was revealed that transplanting of 30 days old seedlings at a spacing of 30x10 cm and application of FYM @ 10 tonnes ha⁻¹ + 125% RDF along with wooden log treatment resulted in the higher economics of finger millet.

References

- Anitha D. Finger millet [*Eleusine coracana* (l.) Gaertn] productivity as influenced by crop geometry and age of seedlings. M.Sc Thesis. Acharya N.G. Ranga Agricultural University, Hyderabad 2015.
- 2. Borkar LS, Khawale VS, Raut PB, Patil TS, Kolte HS. Studies on spacing and nitrogen management under system of rice intensification (SRI). Journal of Soils and Crops 2008;18(2):438-441.
- Goudar PK. Effect of rotation, use of organic and inorganic sources of nutrients on growth and yield of finger millet (*Eleusine coracana* L. GAERTN.). M.Sc Thesis. University of Agricultural Sciences, GKVK, Bangalore 2014.
- Hebbal N. Effects of planting geometry, methods of establishment and nutrient sources on growth and yield of finger millet (*Eleusine coracana* L.). Ph.D Thesis. University of Agricultural Sciences, Bangalore 2017.
- 5. Khafi HR, Ramani BB, Mehta AC, Pethani KV. Effects of different levels of nitrogen, phosphorus and spacing on yield and economics of hybrid bajra. Crop Research 2000;20(3):411-414.
- Kalaraju K, Deva Kumar N, Nagaraja N, Ningappa KB. Effect of methods of planting on growth and yield of finger millet genotypes under organic farming. Research on Crops 2011;10(1):20-24.
- 7. Mathew J, Bridgit TK, Joseph K. Integration of organic and inorganic nutrient sources in transplanted low land rice. Journal of Tropical Agriculture 1994;32(2):166-167.
- 8. Patel BJ, Patel IS. Response of summer pearl millet to different dates, method of sowing and nitrogen levels

under North Gujarat Agro-climatic conditions. Crop Research 2002;24(3):476-480.

- Rajesh K. System of crop intensification in finger millet (*Eleusine coracana* (L.) Gaertn.) under irrigated condition. M.Sc Thesis. Tamil Nadu Agricultural University. Coimbatore 2011.
- Rani Perumal, Francis H, Duraisamy P, Kandaswamy P, Palaniappan SP. Integrated nutrient management in Tamil Nadu, Technical Bulletin of Department of Soil Science and Agricultural Chemistry, T.N.A.U., Coimbatore, Tamil Nadu 1991.
- Senthilkumar N, Poonkodi P, Prabhu N. Response of pearl millet to integrated use of organics and fertilizers. Journal of Ecobiotechnology 2018;10:01-04.
- Shinggu CP, Gani M. Effects of planting methods, sowing dates and spacing on weed and the productivity of finger millet (*Eleusine corocana* L. Gaertn) in the Northern Guinea Savanna of Nigeria. Global Journal of Bioscience and Biotechnology 2012;1(2):160-162.