International Journal of Chemical Studies

P-ISSN: 2349–8528 E-ISSN: 2321–4902 www.chemijournal.com IJCS 2020; 8(6): 1187-1191 © 2020 IJCS Received: 18-09-2020 Accepted: 21-10-2020

CR Hakla

Subject Matter Specialist (Soil Science), KVK- Tonk, Banasthali Vidyapith, Rajasthan, India

NR Meena

Assistant Professor (Agriculture Extension), ANDUAT, Ayodhya, Uttar Pradesh, India

Ekta Pandey

Assistant Professor, Guest Faculty (Agriculture Statistics) ANDUAT, Ayodhya, Uttar Pradesh, India

DV Singh

Senior Scientist and Head, KVK-Tonk, Banasthali Vidyapith, Rajasthan, India

Corresponding Author: CR Hakla Subject Matter Specialist (Soil Science), KVK- Tonk, Banasthali Vidyapith, Rajasthan, India

Soil-Site suitability evaluation for soybean and sunflower crops in the soils of north-west Gir Madhuvanti toposequence of South Saurashtra Region of Gujarat

CR Hakla, NR Meena, Ekta Pandey and DV Singh

DOI: <u>https://doi.org/10.22271/chemi.2020.v8.i6q.10925</u>

Abstract

Six representative pedons were evaluated for their suitability of two oilseed crops (Soybean and Sunflower) in the soils of different land slope of north-west Gir Madhuvanti toposequence of south Saurashtra region of Gujarat. The land slopes, lower piedmont belong to Vertic Haplusterts (P₃) were marginally suitable (S₃) for Soybean and Sunflower. The soils plain area belongs to Typic Haplusterts (P₄) and depression area belong to Sodic Haplusterts (P₅) were marginally suitable (S₃) for Sunflower and currently not suitable (N₁) for Soybean. Upper piedmont belongs to Lithic Ustorthents (P₂) were marginally suitable (S₃) for Soybean and permanently not suitable (N₂) for Sunflower. The soils upper coast belong to Fluventic Calciustepts (P₆) were marginally suitable (S₃) for Soybean. The hill slopes belong to Lithic Ustorthents (P₁) were currently not suitable (N₂) for soybean. The hill slopes belong to Lithic Ustorthents (P₁) were currently not suitable (N₁) for Soybean and permanently not Suitable (N₂) for Sunflower and permanently not suitable (N₁) for Soybean and permanently not suitable (N₂) for Sunflower and permanently not suitable (N₁) for Soybean and permanently not suitable (N₂) for Sunflower. Topography, drainage, shallow soil depth, high CaCO₃, poor soil fertility (low O.C. and high soil pH) soil salinity and sodicity are the major limitations in most soils of north-west Gir Madhuvanti toposequence of south Saurashtra. Results showed that the suitability classes can be improved if the correctable limitations (soil fertility characteristics) are altered through soil amelioration measures.

Keywords: soil-site suitability, land slopes, oilseeds, Soybean, Sunflower, north-west Gir Madhuvanti toposequence and Pedons

Introduction

Soil survey provides useful information for planning proper soil management practices, which are play important role in augmenting crop production. For the sustainable use of the natural resources, a detailed charter of land resources giving its potential and constraints becomes prerequisite for planning. The site specificity of agricultural research and technology is largely determined from differences in two environmental variables, soil and climate.

India is amongst the largest producer and consumer of vegetable oils in the World. The area under oilseeds has been increasing over time and the production has registered many fold increase but its productivity is still low as compared to other oilseed producing countries in the world. The low and fluctuating productivity is primarily because cultivation of oilseed crops is mostly done on marginal lands, which are lacking in irrigation and low levels of inputs. However, India, still imports a significant proportion of its requirement of edible oil. Soybean and Sunflower are grown extensively in different parts of the country.

Yield of any crop is influenced by kind of soils occurring in the area, prevailing climate, topography and management levels. Thus, it is essential to interpret the soil site, characteristics of any place in terms of their suitability for major crops grown in the area and alternative land use planning on sustainable basis. In order to develop some understanding on the nature or the potential for agriculture production such evaluation will help in the future planning for optimum use of natural resources. Soil degradation is a major threat to food security in many areas. The present study was undertaken to evaluate soil-site suitability of Soybean and Sunflower.

Material and method

The study area (north-west Gir Madhuvanti toposequence) was located between 21°13' to 21°25' N latitudes and 69°57' to 70°32' E longitudes encompassing parts of the Mendarda, Vanthli, and Keshod tehsils of Junagadh district and Porbandar tehsil of Porbandar district of south Saurashtra at an elevation ranged from 5 to 190 above mean sea level. IRS IA LISS II FCC imagery on 1:50,000 scale in conjunction with Survey of India topographical (SOI) map referred above on 1:50,000 scale were used to select various land slopes of north-west Gir Madhuvanti toposequence of south Saurashtra region of Gujarat namely: hill slope (LS-1), upper piedmont (LS-2), lower piedmont (LS-3), plain area (LS-4), depression area (LS-5) and upper coast (LS-6) (Fig.-1). The mean annual

rainfall is 1120 mm and the climate of the area is semi-arid characterized by extremes of temperature and low wind velocity. Horizon-wise soil samples collected from the typifying pedons were analyzed for their physical and chemical characteristics following standard procedure and soils were classified according to Key to Soil Taxonomy (Anonymous, 2003) ^[1]. The soil-site suitability for oilseeds were carried out using limitation method according to Sys *et al.*, 1991 & NBSS & LUP, 1994 ^[11, 6] for Soybean and FAO, 1976 & Sys *et al.*, 1991 ^[2, 11] for Sunflower matched with generated data (Table: 1 and 2) at different limitation level: S₁- highly suitable, S₂- moderately suitable, S₃- marginally suitable, N₁- currently not suitable and N₂- not suitable (Sys *et al.*, 1991) ^[11].

Land characteristics	S1	S ₂	S 3	N1	N_2	
1	2	3	4	5	6	
	Climatic characteristics					
Total rainfall (mm)	>750	650-750	550-650	< 550	-	
Rainfall growing seasons (mm)	> 600	500-600	500-400	< 400	-	
Rainfall during critical period	-	-	-	-	-	
Length growing period (days)	> 110	110-100	90-100	< 90	-	
Mean temp. growing season (⁰ C)	25-28	28-30	30-34	> 34	-	
Mean max. temp. grow. Season (⁰ C)	-	-	-	-	-	
Mean min. temp. grow. Season (⁰ C)	-	-	< 20	-	-	
Mean R.H. in growing season	> 70	50-70	< 50	-	-	
Length of dry spells (days)	Flo	owering to pod filling is	critical			
	< 4	4-8	8-12	> 12	-	
	Site characteristics		•		·	
Slope (%)	< 3	3-5	5-8	> 8	-	
Erosion	-	-	-	-	-	
Drainage	Well to mod. Well	Poor/ excessive	-	-	-	
AWC (mm/m)	> 200	150-200	100-150	50-100	< 50	
Stoniness % (surface)	5-10	10-15	15-25	> 25	-	
	Soil characteristics		•		·	
Texture	cl, sicl, l, sil, scl	sl, c	cm, ls	S	-	
Coarse fragments (vol. %)						
Within 50 cm	< 15	15-25	25-35	> 35	-	
Depth (cm)	> 60	50-60	40-50	< 40	-	
CaCO ₃ (%)	< 10	10-20	> 20	-	-	
	Soils fertility					
CEC $cmol(p^+)$ kg ⁻¹	> 20	20-10	< 10	-	-	
B.S. (%)	> 50	50-35	< 35	-	-	
Sat. H.C. (0-15 cm)	> 0.5	0.5-0.2	< 0.2	-	-	
pH (1:2.5)	6.5-7.5	7.5-8.5	> 8.5	-	-	
ECe (dSm ⁻¹)	< 2	2-3	3-4	4-8	> 8	
ESP	< 5	5-10	10-15	> 15	-	

Table 2: Climate and soil-site suitability criteria for Sunflower (FAO, 1976 and Sys et al., 1991)^[2, 11]

Land characteristics	S ₁	S_2	S ₃	N ₁	N_2						
1	2	3	4	5	6						
Climatic (c)											
Precipitation											
I st month	105-215	> 215	-	-	-						
II nd month + III rd month	195-230	> 230	-	-	-						
IV th month	250-450	450-750	> 750	-	-						
V th month	100-150	> 150	-	-	-						
Mean temp. of grain yield (⁰ C)	22-26	26-28	28-30	-	> 30						
		Topography (t)									
Slope (%)	0-2	2-4	4-6	-	> 6						
		Wetness									
Drainage	Good to moderate	Imperfect & excessive	Poor & aeric	Poor but drainable	Poor not drainable						
Physical characteristics (s)											
Texture / structure	c<60s	c<60v	<cs, fs,="" s<="" td=""><td>-</td><td>cm, sicm</td></cs,>	-	cm, sicm						
Coarse fragments (%)	0-15	15-35	35-55	-	> 55						
Soil depth (cm)	> 100	100-75	75-50	-	< 50						

International Journal of Chemical Studies

CaCO ₃ (%)	0-15	15-25	25-35	-	> 35				
Gypsum (%)	0-4	4-10	10-20	-	> 20				
Soil fertility characteristics (f)									
CEC cmol (p ⁺) kg ⁻¹	>16	< 16(-)	< 16(+)	-	-				
BS (%)	> 35	35-20	< 20	-	-				
pH, H ₂ O	6.6-7.5	7.5-8.0	8.0-8.5	-	8.5				
Organic carbon (%)	> 1.2	1.2-0.8	< 0.8	-	-				
Salinity alkalinity (n)									
ECe (dsm ⁻¹)	0-4	4-9	9-12	-	> 12				
ESP (%)	ESP (%) Not specified								

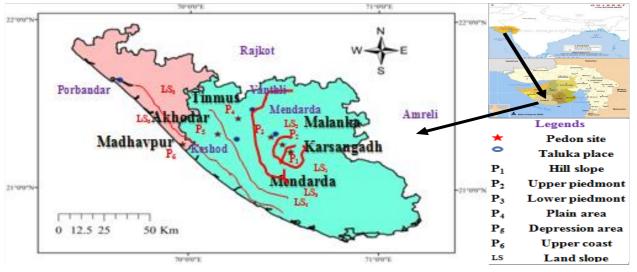


Fig. 1: Site of pedons of north-west Gir Madhuvanti toposequence in South Saurashtra

Result and Discussion

The soils of different pedons of north-west Gir Madhuvanti toposequence of south Saurashtra region, the total sand, silt and clay content mean values of 22.83, 38.90 and 38.26 per cent, respectively indicating dominant of loam to clayey texture. The soil pH, organic carbon, ECe and CaCO₃ ranged from 6.79 to 8.28, 0.37 to 0.84 per cent, 0.63 to 11.82 dSm⁻¹ and 2.75 to 31.80 per cent with the overall mean value of 7.89, 0.58 per cent, 5.00 dSm⁻¹and 19.93 per cent, respectively. The cation exchange capacity, BSP and ESP in the studied soils ranged from 20.60 and 43.96 cmol (P⁺) kg⁻¹, 88.73 to 96.31 and 0.51 to 16.93 with the mean value of 33.18 cmol (p+) kg⁻¹, 92.71 and 8.27. In general, the soils of of north-west Gir Madhuvanti toposequence were moderately alkaline in reaction, low in organic carbon and highly calcareous in nature. The soil at higher elevation had low in pH, EC, CEC, BSP and ESP then lower elevation (Savalia, 2005; Leelavathi et al., 2009; Gandhi et al., 2013 and Shirgire et al., 2015) [8, 5, 3, 10].

Soil-site suitability for different land uses is very important for alternate and suitable land use planning. The soils under study have been rated for tow oilseed crops. Land suitability for oilseeds crops and land quality ratings are those suggested by Sys *et al.*, 1991 & NBSS & LUP, 1994 ^[11, 6] for Soybean and FAO, 1976 & Sys *et al.*, 1991 ^[2, 11] for Sunflower. The oilseeds suitability evaluations of pedons P₁ to P₆ of northwest Gir Madhuvanti toposequence are presented in Table 3-6.

Pedon-1 (Karsangadh) from the Hill slope

The soil associated with this pedon (P_1) was currently not suitable (N_1) for Soybean cultivation because of major limitations like topography, somewhat excessive drainage and shallow soil depth. The soil was not permanently suitable (N_2) for Sunflower because of major limitations like high temperature, topography, shallow soil depth and poor soil fertility (low O.C.). Soil conservation measures like graded narrow base terrace bunds or trenches and contour bunding should be adopted (Savalia *et al.*, 2009)^[9].

Pedon-2 (Malanka) from the Upper piedmont

The soils associated with pedon (P₂) have been found to be marginaly suitable (S₃) for Soybean cultivation because of major limitations like topography, shallow soil depth, high CaCO₃ and poor soil fertility (high soil pH). The soils were not permanently suitable (N₂) for Sunflower cultivation because of major limitations like high temperature, topography, shallow soil depth, high CaCO₃ and poor soil fertility (low O.C. and high soil pH). On adoption of corrective measures like Graded narrow base terrace bunds or trenches are recommended to increase soil depth/rooting volume, conservation tillage and forage-based crop rotations which reduce erosion and allow soil forming factors to maintain and rehabilitate top soil. Similar results were obtained by Savalia *et al.* (2009), Patel *et al.* (2012) and Gandhi *et al.*, (2013) ^[9, 7, 3].

Pedon-3 (Mendarda) from the Lower piedmont

The soils associated with pedon (P₃) were marginally suitable (S₃) for Soybean and Sunflower on account of limitations like texture, poor soil fertility (high soil pH) and soil salinity for soybean and high temperature, topography, texture, soil depth, high CaCO₃ and soil fertility (low O.C. and high soil pH) for sunflower. On adoption of corrective measures like use of organic manures along with balanced fertilizers, zero or minimum tillage, frequent inter culturing operation and application of weathered materials, gypsum and sand in furrow are found to be effective. Similar observations were made by Savalia (2005) and Patel *et al.* (2012) ^[8, 7].

Pedon-4 (Tinmus) from the Plain area

The soils associated with pedon (P₄) were marginally suitable (S₃) for Sunflower on account of limitations like high temperature, texture, soil depth, high CaCO₃, soil fertility (low O.C. and high soil pH) and soil salinity. The soils were currently not suitable (N₁) for soybean on account of limitations like texture, low soil fertility (high soil pH), soil salinity and sodicity. On adoption of corrective measures of mulching, rain water leeching and use of organic manures, continuous cropping with well ranged crops, reduce, zero or minimum tillage, frequent inter, application of tanch (murrum) gypsum and sand in furrow found effective, constant monitoring of soils and entire root zone requires to be flushed for which availability of good quality water is essential. Similar observations were made by Savalia (2005), Patel *et al.* (2012) and Gandhi *et al.* (2013) ^[8, 7, 3].

Pedon-5 (Akhodar) from the Depression area

The soils associated with pedon (P₅) have been found to be marginally suitable (S₃) for Sunflower on account of limitations like high temperature, texture, high CaCO₃, poor soil fertility (low O.C. and high soil pH) and salinity. The soils were currently not suitable (N₁) for Soybean on account of limitations like texture, soil pH as well as salinity and sodicity. On adoption of corrective measures like provision of surface drainage through lateral ditch (Giri *et al*, 1999) ^[4], adoption of salt tolerant varieties, mulching, use of organic manures, application of tanch (murrum) gypsum and sand in furrow found effective, constant monitoring of soils, soil and water conservation practices could be adopted these soils to make them productive. Similar observations were made by Savalia (2005), Patel *et al.* (2012) and Gandhi *et al.* (2013) ^[8, 7, 3].

Pedon-6 (Madhavpur) from the Upper coast

The soils associated with pedon (P_6) have been evaluated to be marginally suitable (S_3) for Sunflower on account of

limitations like high temperature, texture, drainage, high CaCO₃, low soil fertility (low O.C. and high soil pH) and soil salinity. Upper coast were not permanently suitable (N_2) for soybean cultivation on account of limitations like drainage, poor soil fertility (soil high pH) as well as soil salinity and sodicity. On adoption of corrective measures like provision of surface drainage through lateral ditch (Giri et al, 1999)^[4], adoption of salt tolerant varieties, use of organic manures along with gypsum and nitrogenous fertilizers and soil and water conservation practices, proper sub-surface drainage need to be ascertained, lateral ditches can serve to drain the soils of excessive salts could be adopted these soils to make them productive. For severely degraded soils, xerophytic, halophytic trees, shrubs and grasses should be grown. Similar observations were done by Savalia (2005), Patel et al. (2012) and Gandhi et al. (2013) [8, 7, 3].

Conclusion

Based on the present study it can be concluded that the soils of study area were moderately alkaline in reaction and highly calcareous in nature. The land slopes, lower piedmont belong to Vertic Haplusterts (P_3) were marginally suitable (S_3) for Soybean and Sunflower. The soils plain area belongs to Typic Haplusterts (P₄) and depression area belong to Sodic Haplusterts (P_5) were marginally suitable (S_3) for Sunflower and currently not suitable (N_1) for Soybean. Upper piedmont belongs to Lithic Ustorthents (P₂) were marginally suitable (S_3) for Soybean and permanently not suitable (N_2) for Sunflower. The soils upper coast belong to Fluventic Calciustepts (P₆) were marginally suitable (S₃) for Sunflower and permanently not suitable (N_2) for soybean. The hill slopes belong to Lithic Ustorthents (P₁) were currently not suitable (N_1) for Soybean and permanently not suitable (N_2) for Sunflower. Corrective measures like use of organic manures along with gypsum and balanced fertilizers, soil and water conservation practices, could be adopted these soils to make them productive.

Table 3: Soil-site suitability evaluation and land qualities for Soybean and Sunflower of the soils of north-west Gir Madhuvanti toposeque	ence of
south Saurashtra	

Pedon	Climat	ie (c)	Wetnes		mical s (s)	Soil f	ertility	Salinity/ alkalinity (n)					
No.	Rainfall (mm)	Temp. (⁰ C)	Topography (slope %)	drainage	Texture	Soil depth (cm)	CaCO ₃ (%)	0.C. (%)	BSP	CEC (cmol(p ⁺)kg ⁻¹)	pН	ECe (dSm ⁻¹)	ESP
1	2	3	4	5	6	7	8	9	10	11	12	13	14
P ₁	1120	27.31	15-30	Somewhat excessive	1	25	2.75	0.84	88.44	20.60	6.79	0.63	0.53
P ₂	1120	27.31	3-8	Well	cl	27	31.80	0.68	91.36	25.78	7.90	0.88	2.56
P3	1120	27.31	1-3	Well	с	70	19.81	0.60	92.03	30.83	8.04	2.86	5.80
P4	1120	27.31	0-1	Well	с	94	19.98	0.50	94.04	34.66	8.13	5.95	10.80
P ₅	1120	27.31	0-1	Moderately Well	с	105	21.05	0.49	94.10	42.94	8.20	7.86	13.03
P6	1120	27.31	0-1	Imperfect	sicl	127	25.20	0.37	96.31	43.96	8.28	11.82	16.93

c - Clay, sicl - Silty clay loam, l - Loam, cl - Clay loam

 Table 4: Soil-site suitability evaluations for Soybean crops in the soils of north-west Gir Madhuvanti toposequence of south Saurashtra (Sys et al., 1991 & NBSS & LUP, 1994)

Pedon	Climate (c)		Wetness	s (w)	Physical chara	Physical characteristics (s) Soil fertility characteristics (f) S			Salinity	/ alkalinity (n)	Crop	
No.	Rainfall (mm)	Temp. (⁰ C)	Topography (slope %)	drainage	Texture	Soil depth (cm)	BSP	CEC (cmol(p ⁺)kg ⁻¹)	pН	ECe (dSm ⁻¹)	ESP	suitability class
1	2	3	4	5	6	7	8	9	10	11	12	13
P1	S_1	S_1	N ₁	S_2	S_1	S ₃	S_1	S_1	S_1	S_1	S_1	N ₁ ws
P ₂	S_1	S_1	S_2	S_1	S_1	S_3	S_1	S_1	S_2	S_1	S_1	S ₃ wsf
P3	S_1	S_1	S_1	S_1	S_2	S_1	S_1	S_1	S_2	S_2	S_2	S ₃ sfn
P ₄	S_1	S_1	S_1	S_1	S_2	S_1	S_1	S_1	S_2	N1	S ₃	N1 sfn
P5	S_1	S_1	S ₁	S_1	S_2	S1	S_1	S ₁	S_2	N_1	S ₃	N ₁ sfn
P ₆	S_1	S_1	S_1	S_2	S_1	S_1	S ₃	S_1	S_1	$S_2 N_2$	N_1	N ₂ wfn

 Table 5: Soil-site suitability evaluations for Sunflower crops in the soils of north-west Gir Madhuvanti toposequence of south Saurashtra (FAO, 1976 and Sys *et al.*, 1991) ^[2, 11]

Pedon	Climat	te (c)	Wetness	(w)	•	ical & che racteristic		Soil fertility characteristics (f)			Salinity/ alkalinity (n)	Crop	
No.	Rainfall (mm)	Temp. (⁰ C)	Topography (slope %)	drainage	Texture	Soil depth (cm)	CaCO3 (%)	O.C. (%)	BSP	CEC (cmol(p ⁺)kg ⁻¹)	pН	ECe (dSm ⁻¹)	suitability class
1	2	3	4	5	6	7	8	9	10	11	12	13	14
P1	S_1	S_2	N_2	S_2	S ₁	N_2	S_1	S_2	S_1	S_1	\mathbf{S}_1	S_1	N ₂ cwsf
P ₂	S_1	S_2	S_3	S ₁	S_1	N_2	S ₃	S ₃	S_1	S_1	\mathbf{S}_2	S_1	$N_2 cwsf$
P3	S_1	S_2	S_1	S ₁	S_2	S ₃	S_2	S ₃	S_1	S_1	\mathbf{S}_3	S_1	S ₃ cwsf
P ₄	S_1	S_2	S_1	S ₁	S ₂	S_2	S_2	S ₃	S_1	S_1	\mathbf{S}_3	S_2	S ₃ csfn
P5	S_1	S ₂	S_1	S ₁	S ₂	S_1	S_2	S ₃	S ₁	S_1	\mathbf{S}_3	S_2	S ₃ csfn
P6	S_1	S_2	S_1	S_2	S ₂	S_1	S ₃	S ₃	S_1	S_1	\mathbf{S}_3	S ₃	$S_3 cwsfn$

Table 6: Limitation levels of the land characteristics and land suitability class for Soybean and Sunflower

No. of Pedon	Sub group	Soil-site suitability class for Soybean and Sunflower			
reaon		Soybean	Sunflower		
Pedon-1	Hill slope (Karsangadh), MSL : 190 m, 21 ⁰ 13' N latitudes, 70 ⁰ 32' E longitude, Lithic Ustorthents	N1 ws	$N_2 cwsf$		
Pedon-2	Upper piedmont (Malanka), MSL :155 m, 21°16' N latitudes, 70°29' E longitude, Lithic Ustorthents	S ₃ wsf	$N_2 cwsf$		
Pedon-3	Lower piedmont (Mendarda), MSL : 92 m, 21 ⁰ 18' N latitudes, 70 ⁰ 25' E longitude, Vertic Haplusterts	$S_3 sfn$	$S_3 cwsf$		
Pedon-4	Plain area (Tinmus), MSL : 27 m, 21 ⁰ 25' N latitudes, 70 ⁰ 15' E longitude, Typic Haplusterts	N1 sfn	S ₃ csfn		
Pedon-5	Depression area (Akhodar), MSL : 13 m, 21 ⁰ 19' N latitudes, 70 ⁰ 08' E longitude, Sodic Haplusterts	$N_1 sfn$	S ₃ csfn		
Pedon-6	Upper coast (Madhavpur), MSL : 5 m, 21°16 N latitudes, 69°57' E longitude, Fluventic Calciustepts	N2 wfn	S ₃ cwsfn		

 S_1 = Highly suitable, S_2 = Moderately suitable, S_3 = Marginally suitable, N_1 = Currently not suitable, N_2 = not permanently suitable, c = climate, w = Wetness, s = Physical characteristics, f = Soil fertility characteristics, n = Salinity/Alkalinity hazard

Reference

- Anonymous. Keys to Soil Taxonomy. USDA Natural Resources Conservation Service, Washington, D.C., 2003.
- 2. FAO. A frame work for land evaluation. *Soils Bulletin*, 32: FAO, Rome, 1976.
- 3. Gandhi G, Savalia SG, Verma HP. Soil-site suitability evaluation for Castor in calcareous soils of Girnar toposequence in Southern Saurashtra region of Gujarat. Journal of Agriculture for Sustainable Development. 2013;1(1):7-11.
- Giri JD, Singh RS, Shyampura RL, Jain BL. Soil and evaluation along coastal Gujarat for alternate land use options. J. Indian Soc. Coastal Agric. Res. 1999;17(1&2):76-79.
- Leelavathi GP, Naidu MVS, Ramavatharam N, Karunasagar G. Studies on genesis, classification and evaluation of soils for sustainable land use planning in yerpedu mandal of Chittoor district. Andhra Pradesh. J. of Indian soc. of soil sci. 2009;57:109-120.
- 6. NBSS and LUP. *Proc.* National meets on soil-site suitability criteria for different crops. Feb. 7-8, 1994 held at NBSS and LUP (ICAR), New Delhi, 1994.
- Patel HP, Savalia SG, Chopda MC. Evaluation of soil constraints and Soil-site suitability for Sunflower in Meghal irrigation command area of southern saurashtra region of Gujarat. An Asian J. Soil Science. 2012;7(1):131-137.
- 8. Savalia SG. Characterization, classification and evaluation of soil and water resources across the toposequences of Southern Saurashtra. Ph.D. Thesis submitted to J.A.U., Junagadh, 2005.

- Savalia SG, Kachhadiya SP, Solanki MS, Gundalia JD. Assessment and management of Soil Sustainability of calcareous soils in different landforms in a transect over basaltic trap. An Asian J Soil Science 2009;4(1):86-92.
- Shirgire ST, Savalia SG, Misal NB, Singh N. Evaluation of soil constraints and soil-site suitability for Castor in the soils of coastal area of Jamnagar district of Gujarat. Research in Environment and Life Sciences 2015;8(3):501-506.
- 11. Sys IC, Vanrasant B, Debavye J. Land evaluation, Part II and III. Methods in land evaluation. Agric. Pub. General administration for development co-operation place, de, camp de mars, 5 btc, 57-1050, Brussels, Belgium, 1991.