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Abstract 

In the field of DNA sequencing, Genotype by sequencing is to discover SNPs in order to perform 

Genotyping studies. A most commonly occurring problem in GBS is the presence of missing 

observations. Quite often, the standard statistical models may not handle such missing data situation also 

known as incomplete data situations. An alternative to deal with incomplete data situation is to impute 

missing data for further downstream analysis. Hence a study is conducted with the objectives (i) to 

impute missing GBS data by various imputation techniques, based on both supervised and unsupervised 

learning algorithms at different levels of missingness, (ii) to identify suitable imputation technique to 

deal with incomplete GBS data situation. Based on correlation coefficient and mean squared prediction 

error (MSPE) between imputed value and true response, the accuracy of imputation technique was 

assessed. Different imputation techniques, viz., Mean Allele Frequency Imputation (MNI), Singular 

Value Decomposition Imputation (SVDI), k-Nearest Neighbour Imputation (kNNI), locally weighted 

linear regression imputation (LWI), Expectation Maximization Imputation (EMI) and Random Forest 

Imputation (RFI) were applied on incomplete GBS data of mice, a model animal organism, to assess their 

performance. The results revealed that RFI was found to be most accurate imputation technique. Besides, 

the performance of RFI in terms correlation coefficient at 5%, 10%, 15% and 20% missing data situation 

was observed to be 0.778, 0.765, 0.750 and 0.735 respectively. A Similar trend was also observed for 

RFI in terms of mean square prediction errors. Thus, it is suggested to use RFI technique to deal with 

incomplete GBS data situation and prior to the application of genomic selection models for breeding 

value estimation. 

 

Keywords: Incomplete data, Genotyping by sequencing, Imputation techniques, prediction error 

 

Introduction 

A milestone for genomic studies in molecular biology is largely concerned with understanding 

how DNA regions regulating the chemical processes leading in controlling the traits of an 

organism. Hence association of different regions or order of nucleotides of the DNA involved 

in controlling traits by regulating several chemical processes called ‘genes’ (Wilhelm 

Johannsen, 1909) [6] and totality of single copy of all genes called genome (Hans winkler, 

1920) is of highest importance in selection processes.  

In recent past Elshire et al. (2011) [4] described called genotyping by sequencing (GBS), to 

discover single nucleotide polymorphisms (SNPs) in order to perform genotyping studies. 

GBS is a prominently vigorous, modest, and inexpensive procedure for SNP discovery and 

mapping. GBS is gaining popularity is it provides genome wide marker coverage (Poland and 

rife, 2012) [10, 11]. GBS data with SNP information of genotypes generally containing missing 

values, because i) the fraction of the chromosomal segment which is re-sequenced is not 

exactly the same between two individuals. ii) Random fragments of the genome are sequenced 

at low depth. The proportion of missing data mainly based on two factors: (a) Depth or 

coverage of sequencing and (b) library complexity (Sims et al. 2014) [16]. Coverage (or depth) 

in DNA sequencing is the number of reads that include a given nucleotide in the reconstructed 

sequence. Whereas library complexity is number of unique molecules in library. The unique 

molecules number is inversely proportional to the library complexity (Elshire et al. 2011) [4]. 

Most of the statistical models require a complete data set and therefore marker imputation is 

necessary step before the data can be used for further downstream analysis for true estimation  
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of breeding values in genomic selection. Imputation is a 

statistical technique that is often used to increase the power 

and resolution of genomic association studies without a major 

loss in accuracy of breeding values estimated through GS 

models (Marchini et al, 2007; Marchini and Howei, 2010) [8, 7].  

Several statistical imputation methods are used to make 

incomplete as complete data. Methods are like k- Nearest 

Neighbours imputation (k-NNI) based on k-nearest neighbour 

algorithm, Singular Value Decomposition Imputation (SVDI) 

based on singular value decomposition algorithm, Mean 

Allele Frequency Imputation (MNI) based on mean allele 

frequency, Locally weighted linear regression imputation 

(LWI) based on regression technique and Expectation 

maximization Imputation (EMI) based on Expectation 

maximization algorithm and random forest imputation 

technique (RFI) based on random forest algorithm.  

 

Materials and methods 

The mice data set freely available in BGLR package of R 

software was considered initially. The data set consists of 

1814 genotypes, each genotyped for 10346 polymorphic 

markers for body mass index (BMI) (Valdar et al. 2006a; 

2006b) [20, 21]. To assess the performance of different 

imputation techniques, various levels of missingness viz, 5%, 

10%, 15% and 20% were created by randomly generating 

missing observations from data set. This process was repeated 

100 times at each level of missingness. 

The imputation techniques described below were used for 

assessing their performance in imputing the missing values.  

 

Mean allele frequency Imputation (MNI) 

Here, the missing value of any genotype for a given marker is 

imputed by the mean allele frequency of that marker on 

remaining genotypes. This method of imputation maintains 

the sample size and is easy to use, but the variance estimate 

gets underestimated (Charmet G, 2020) [3]. MNI function was 

used to impute missing values from BWGS package of R 

3.6.0 software. 

 

Singular value decomposition imputation (SVDI) 

This method obtains a set of mutually orthogonal 

(independent) marker patterns that can be linearly combined 

to approximate the effect of all markers in the data set. These 

patterns are identical to the principle components of the 

marker data matrix and are further referred to as eigengenes 

(Alter et al., 2000) [1]. 

 

𝑀𝑛𝑥𝑝 = 𝑈𝑛𝑥𝑟Σ𝑟𝑥𝑟𝑉𝑟𝑥𝑝
𝑇  

[

𝑥11 ⋯ 𝑥1𝑝

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑝

]

(𝑛𝑥𝑝)

= [

𝑢11 ⋯ 𝑢𝑛1

⋮ ⋱ ⋮
𝑢1𝑛 ⋯ 𝑢𝑛𝑛

]

(𝑛𝑥𝑟)

[

𝜎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑝

]

(𝑟𝑥𝑟)

[

𝑣11 ⋯ 𝑣1𝑝

⋮ ⋱ ⋮
𝑣𝑝1 ⋯ 𝑣𝑝𝑝

]

(𝑟𝑥𝑝)

 

 

Where, M is (nxp) dimensional marker matrix with entries 

i.e., 0’s, 1’s and 2’s (0 for AA, 1 for Aa and 2 for aa). U={uij} 

is (nxr) dimensional matrix of order with ‘n’ eigen vectors 

and V={vij} is (rxp) dimensional matrix with ‘p’ eigen 

vectors, U and V are orthogonal matrices with orthonormal 

eigenvectors i.e., UUTor UTU = I = VVTor VTV chosen 

from MMᵀ and MᵀM respectively(i =1….n) and (j = 1….p). 

∑ is a (rxr) diagonal matrix where 𝑟 ≤ 𝑚𝑖𝑛{𝑛, 𝑝} is the rank 

of M matrix and ∑with ‘r’ elements equal to the square root 

of the positive eigenvalues 𝜎𝑖 = √𝜆𝑖 of MᵀM or MMᵀ (both 

matrices have the same positive eigenvalues anyway). The 

diagonal elements are composed of singular values. 

Therefore, initially the missing values of jth marker column 

are imputed by the average of available values of jth marker 

column, to make it complete. This procedure is performed for 

all the marker columns having missing values so as to make 

M matrix complete. SVD was then utilized to impute the 

missing value in M, and this procedure is repeated on the 

newly obtained matrix, until the total change in the matrix 

falls below the empirically determined threshold of 0.01. The 

impute. svd function available in BCV package of R 3.6.0 

software was utilized for this imputation. 

 

k-Nearest Neighbour Imputation (kNNI) 

This imputation is based on k-nearest neighbour algorithm (k-

NN). It is a non-parametric method mostly used in pattern 

recognition and also used for handling two problems such as 

classification and regression. kNN assigns weights to the 

contributions of the neighbours, so that the nearer neighbors 

contribute more to the average than the more distant ones 

(Hastie, 2001) [19]. kNN algorithm involves the following 

steps: 

1) ‘k’ gets decided based on the square root of number of 

genotypes(k=√𝑛). It is a positive integer and must be an odd 

number.  

2) Calculate distance between the query genotype (with 

missing marker) and the genotype under consideration by 

excluding the corresponding missing markers with prominent 

distance measure is Euclidean distance: 𝑑(𝑋, 𝑌) =

√∑ (𝑋𝑖 − 𝑌𝑖)2𝑝
𝑖=1   

 

Where, X and Y are two different genotypes and d (X, Y) is 

distance between two different genotypes measured over ‘p’ 

number of markers without missing observations.  

3) From nC2 distances, ‘k’ number of nearest genotypes are 

considered by giving weights as inverse of distance (1/d), 

where larger weights are given for nearest neighbor 

genotypes. The missing markers in query genotype are then 

replaced with the weighted mean of the k most similar 

genotypes based on Euclidean distance between standardized 

observations. kNN imputation was implemented by using 

impute.knn function of IMPUTE package in R 3.6.0.  

 

Locally weighted linear regression method Imputation 

(LWI) 

This is a non-parametric regression algorithm proposed by 

Pyeye et al., 2016 [13], where the model does not learn a fixed 

set of parameters as is done in ordinary linear regression. 

Relatively, the parameters (βs) are measured individually for 

each missing value (z). While computing ‘β’, a higher 

preference is given to the points in the training set lying in the 

vicinity of missing value (z) than the points far away from 

missing value (z). LWI was executed under locfit package in 

R 3.6.0. 

 

Expectation maximization imputation (EMI) 

This imputation technique is based on Expectation-

Maximization algorithm and used for predicting the values of 

latent variables with the condition that the general form of 
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probability distribution governing those latent variables is 

known to us (Poland J, 2012) [10, 11]. It is used to find the local 

maximum likelihood parameters of a statistical model in the 

cases where latent variables are involved and the data is 

missing or incomplete. Under this method, non-missing 

marker data is used to obtain the maximum likelihood 

estimates of the vector of means (𝑥̅) and covariance 

matrix(ŝ)of the individuals based on the markers, called ‘E-

step’ for the ‘Expected’ distribution. These estimates fed into 

the model to obtain multiple linear regression estimates of the 

missing marker values called ‘M-step’ for the maximization 

of the distribution. 𝑥̅ and ŝ were then re-estimated and over 

again used to re-estimate the missing marker values. This 

process was repeated until the difference between the new 

estimate and the previous estimate of 𝑥̅ + ŝ ∗ ŝ𝑇was less than 

or equal to 0.02. EMI function was used from BWGS package 

of R 3.6.0 (Charmet G, 2020) [3]. 

 

Random forest imputation (RFI) 

Random forest imputation is based on random forest 

algorithm, which is a supervised machine learning algorithm 

mainly used for the purpose of solving classification and 

regression problems. The final decision of classifying the 

instances is made on the basis of the majority of the decision 

trees (Brieman et al., 1984).  

The steps involved in this procedure: (1) construct 

bootstrapped data sets from training data set with 

missingness, (2) construct decision trees using bootstrapped 

datasets, wherein which marker should go to root node was 

decided randomly and leaf nodes can be selected with the help 

of Gini Index (GI) or Gini split GI = 1 − ∑ (pi)
2C

i=1  (i = 0, 1 

and 2 for number of SNPs) (Gini, 1912), (3) repeat the step 1 

and 2 to get defined number of decision trees then missing 

observation was decided based on majority of decision trees 

by aggregating them called ‘Bagging’. The missForest 

function was utilized from miss Forest package of R 3.6.0. 

 

Parametric values of different imputation techniques 

The missForest of R package was used for imputing the 

missing values by RFI. The nodesize, maxiter, ntree and mtry 

were kept as 5, 10, 200 and 57 (=sqrt (3285)) respectively. In 

case of EMI, tol=0.01 was set, i.e., threshold between true and 

imputed value. The maxiter and tol as 10 and 0.01 

respectively were set for SVDI and k, rowmax and colmax as 

10, 0.5 and 0.8 for kNNI respectively. LWI and MNI were 

used directly with the default values of parameters 

 

Prediction accuracy of imputation techniques 

The prediction accuracy of a given imputation technique at a 

given level of missingness was computed as average 

correlation coefficient (𝑟̅), where average is taken over the 

estimated correlation coefficients (𝑟î’s) obtained from 100 

simulated data sets (i=1,2,….100) and the correlation 

coefficient from each data set is estimated between imputed 

missing values and the original flagged values. The 𝑟î for an 

ith simulated data set is given by 𝑟î =
𝑐𝑜𝑣(𝑋,𝑌)

√𝑣(𝑋).𝑣(𝑌)
, where X and Y 

are vectors of flagged values and imputed values. The 

standard error of correlation coefficient (SE(r)) is estimated as 

square root of variance among 𝑟î’s. Student’s t-test is used for 

testing the H0: =0 at  (=0.01) level of significance. The t 

statistics is calculated as ratio of average correlation 

coefficient to SE (r). On the other hand, Mean Squared 

Prediction Error (MSPE) from ith simulated data set was 

estimated by 𝑀𝑆𝑃𝐸𝑖 =
∑ (𝑋𝑖𝑗

𝑓𝑙𝑎𝑔𝑔𝑒𝑑𝑛
𝑗=1 −𝑌𝑖𝑗

𝑖𝑚𝑝𝑢𝑡𝑒𝑑
)2

𝑛
, (Schmitt et 

al. 2015) [15]. Where n is the number of missing values. The 

average MSPE is then estimated over 100 simulated data sets.  

 

Results and Discussion 

The mice data set described in materials and methods was 

used for creating missing values randomly at various levels of 

missingness, viz, 5%, 10%, 15% and 20%. Under each level 

of missingness, 100 data sets were simulated by randomly 

deleting the observations. However, the original values of the 

deleted observation were recorded and marked as “flagged 

values”. Six imputation techniques viz, EMI, MNI, LWI, 

SVDI, k-NNI and RFI were applied on each of the 100 

simulated data sets for a given level of missingness. 

Subsequently, all the imputed values were recorded and 

Pearson correlation coefficient between the imputed missing 

values and the original flagged values was computed for each 

of the simulated data set for a given level of missingness and 

that too under a given imputation technique. The mean and 

standard error of correlation coefficient over 100 simulated 

data sets were estimated and presented in Table 1. This 

procedure was repeated for 10%, 15% and 20% of missing 

values and the corresponding estimated mean and standard 

error of correlation coefficient were presented in Table 1. 

Similarly, for all other imputation techniques, the estimated 

mean and standard error of correlation coefficients were 

presented in Table 1.  

The mean square prediction errors from each of the simulated 

data sets under six imputation techniques: EMI, MNI, LWI, 

SVDI, k-NNI and RFI at different levels of missingness were 

computed and presented in Table 2. In addition, the estimated 

correlation coefficients along with standard errors under each 

level missingness over different imputation techniques were 

graphically represented in Fig. 1.  

Table. 1 reveal that at 5% level of missing observations, RFI 

has shown highest correlation between flagged and imputed 

values, followed by EMI and SVDI, KNNI whereas LWI has 

shown lowest correlation. Whereas, the standard error of 

correlation coefficient from RFI at 5% level of missingness 

was found to be lowest and from LWI it was observed as 

highest (Fig. 1). Such trends in terms of correlation 

coefficients and standard errors were observed under 10%, 

15% and 20% missingness. Besides, RFI among different 

imputation techniques has shown lowest MSPE value under 

5% missingness (Table 1). However, the values of MSPE for 

EMI, SVDI, kNNI, MNI and LWI were increased in the order 

the techniques arranged. Such trend in the performance of RFI 

over other imputation techniques in terms of MSPE was 

observed under 10%, 15% and 20% missing data situations.  

Troyanskaya et al. (2001) showed that kNNI outperforms 

SVDI while using DNA micro array data with 1 to 20% 

missingness. However, in the present study, SVDI shown a 

slightly higher performance than kNNI with GBS data, where 

marker response is 0, 1, and 2 or -1, 0 and +1. Stekhoven 

and Buhlmann, (2012) [18] presented that RFI outperforms on 

mixed data such as continuous as well as categorical data 

compared to k-NN imputation and multivariate imputation 

using chained equations (MICE). Further, RFI has no need for 

tuning parameters nor does it require assumptions about 

distributional aspects of the data. Our results also revealed 

that RFI has shown high imputation accuracy than kNNI in 

GBS data situation with various levels of missing 

observations. Charmet et al. (2020) [3] reported that the 

imputation accuracy of EMI technique was greater than MNI 
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technique when presence of missingness in GBS data upto 

80% while using GS models for prediction of breeding values. 

The results from the present study also showed a similar trend 

in imputation accuracy between EMI and MNI even without 

using GS models.  

 

Table 1: Estimates of Correlation coefficient between flagged values and imputed missing values for various levels of missing (LoM) 

observations under different imputation techniques 
 

LoM 
Imputation Technique 

RFI EMI SVDI KNNI MNI LWI 

5% 0.7788±0.0037 0.6785±0.0043 0.6583±0.0044 0.6455±0.0045 0.4791±0.0051 0.2541±0.0057 

10% 0.7659±0.0027 0.6565±0.0031 0.6385±0.0032 0.6254±0.0032 0.4594±0.0037 0.2456±0.004 

15% 0.7509±0.0022 0.6387±0.0026 0.6145±0.0027 0.6158±0.0027 0.4455±0.003 0.2354±0.0033 

20% 0.7353±0.002 0.6254±0.0023 0.5915±0.0024 0.5855±0.0024 0.4124±0.0027 0.2195±0.0029 

 

Table 2: Mean Square prediction error (MSEP) between flagged and imputed values at various levels of missing observations under different 

imputation techniques 
 

LOM 
Imputation Technique 

RFI EMI SVDI KNNI MNI LWI 

5% 0.010 0.0112 0.0137 0.0141 0.0199 0.028 

10% 0.0107 0.0119 0.0146 0.0148 0.0209 0.0301 

15% 0.0129 0.0126 0.0151 0.0154 0.0214 0.0334 

20% 0.0136 0.0144 0.0158 0.0168 0.0222 0.0344 

 

 
 

Fig 1: Imputation accuracy of different imputation techniques measured as estimated correlation coefficients between flagged and imputed 

values at varying levels of missingness 

 

Conclusion 

The present study revealed that RFI outperformed EMI, 

SVDI, kNNI, MNI and LWI imputation techniques while 

using GBS data at different levels of missing observations, 

i.e., 5%, 10%, 15% and 20%. The performance of imputation 

techniques is assessed in terms of imputation accuracy 

measured as high significant correlation between observed 

(flagged) and imputed values as well as in terms of Mean 

Squared Prediction Error.  
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