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Intelligent intra-row weeding systems using deep 

learning technology: A review 

 
Megha Ugargol and R Mahesh 
 
Abstract 

Huge quantity of herbicide spraying leads to fertile soil deterioration and due to the scope of organic 

farming concepts, mechanical weeding equipments have emerged as a promising method to eliminate 

weeds. Inter row weeding is successfully done by cultivators or harrows as they are just dragged behind 

the vehicles but for intra row weeding, there necessitates intelligent systems. Intelligent intra row 

weeding system is composed of vision system, control system and intra row weeding device. 

Identification of crop and weed in field becomes a critical part. Till now, limited varieties of crop and 

weed are detected by traditional methods due to their distinctive morphological feature but as the 

complexity increases in external environment and crops and weeds whose morphological feature appear 

similar creates problem in detection. To overcome such difficulties of detection and identification, 

intelligent technologies like deep learning concepts are introduced into it. This new technology promises 

to improve the weeding efficiency in fields. This paper reviews about intelligent intra row weeding 

systems using deep learning technology. 

 

Keywords: Deep learning, yolo model, weed localisation, intra row weeding, mechanical type, 

intelligent systems 

 

Introduction 

Agriculture production has to be doubled in upcoming days while also protecting the 

environment and balancing the ecological activities. Weed mitigation in the field plays a 

prominent role in both these systems. Global yield could reduce upto 34% due to uncontrolled 

weed growth (Oerke, 2006) [18]. All over the world, in developed countries large farming 

systems rely on intensive herbicide application methods. This dependence on herbicides can 

lead to deterioration of soil health, soil pollution, groundwater pollution, decrease in soil 

organic matter and even cause serious health issues to (MacLaren et al., 2020) [17]. Farmers 

spend huge amount of money on weed management, often without adequate technical support, 

resulting in poor weed control and reduced crop yield. 

Mechanical weeding is an alternative option for removal of weeds instead of herbicide 

spraying. It mainly consists of hand weeding, animal drawn cultivators or harrows and tractor 

drawn equipments. When it comes to annual and biennial weeds, hand weeding or hoeing is a 

very safe and efficient method. However, human labour is becoming more and more expensive 

due to the fast industrialization and urbanisation of developing nations (Abouziena et al., 

2016) [1]. Animal and tractor drawn equipments remove weeds in inter row region only, once 

again farmer has to hire labour to remove intra row weeds ending up in a high cost of weeding. 

In order to remove intra row weeds while also simultaneously removing inter row weeds, there 

necessitates the inclusion of intelligent technologies.  

To enhance the weeding efficiency of inter row weeders, intra row weeding mechanisms are 

introduced to it. In recent years, many researchers have proposed different types of intra row 

weeding mechanisms whether detachable or integrated to the mobile platform. Advanced 

technologies are involved to achieve the goal of intra row weeding mechanism. An intelligent 

intra row weeding mechanism consists of sensing system, control algorithm and weeding 

device. Among all, sensing system is most critical part of intra row weeding mechanism as it 

detects crop or weed. Earlier, crop and weed detection was carried out by ultrasonic, infrared 

and laser sensors, but there detection capacity decreased when crops and weeds morphology 

appear same. As the time advanced, machine vision system was developed to precisely 

identify crop and weed.  
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Machine vision has enabled automated and robotic weed 
control to precisely detect and identify the target. It basically 
consists of dataset acquisition, dataset preparation, digital 
image processing algorithms. The fact that machine-vision-
based systems used for robotic weed management are 
susceptible to changes in natural light is a concerning issue. 
This primarily causes problems with feature extraction and 
vegetation segmentation (weeds and crops versus barren soil, 
boulders, and residues). Differentiating weeds from crops, 
which have similar appearances, is another problem. 
Furthermore, when there is considerable plant blockage, it 
might be quite difficult to distinguish a single plant (Li et al., 
2019) [15]. Digital image processing can be done through 
machine learning or deep learning models. Compared to 
typical ML approaches, DL algorithms offer numerous 
advantages for image classification, object detection, and 
recognition. Crops and weeds often resemble one other, 
making it challenging to extract and choose differentiating 
characteristics using machine learning techniques. Thanks to 
DL methods' robust feature learning capabilities, this problem 
can be effectively solved. Hasan et al., 2021 [11]. Therefore, 
DL method is used in intelligent intra row weeding 
mechanisms to accurately detect and localize the crop and 
weed position in complex environments. This review paper 
discusses about intelligent intra row weeding mechanisms 
involving deep learning technology. 

 

Materials and Methods 

Basic principle of intelligent intra row weeding system 

using deep learning model 
When the autonomous vehicle or weeding robot system 
operates in the field, the camera records real time images of 
the crop and weed and send them to the portable computer, 
which processes the images in real time using the computer's 
deep learning detection model. The control system is not 
given weeding instructions by the visual detection system 

when it cannot identify weeds growing between plants and 
vice versa. 

 

Main components of intelligent intra row weeding system 

An intelligent intra row weeding systems consists of three 

main components which are given below  

a) Visual detection and identification of crop/weed  

b) Control system  

c) Intra row weeding mechanism 

 

Visual detection and identification of crop/weed 

Chang et al., 2021 [4] used deep learning model based 

YOLOv3 network for weed detection and localization. The 

YOLOv3 tool was a common deep learning model used to 

quickly detect objects. It was executed in the Darknet 

environment. Residual neural network (RestNet) and feature 

pyramid networks (FPN) were its main architectures, which 

improved the prediction ability of small objects. This network 

tool was used to detect weed objects. A desktop computer 

with a high-speed computing processor was paired with a 

high-speed graphics processing unit (GPU) to train the 

YOLOv3 network model.  

The training model of YOLOv3 was configured as follows: 

Batch size set to 64, image size resized to 416 × 426 pixels, 

subdivision of 32, momentum of 0.9, decay of 0.0005, 

learning rate of 0.001. After that, image preprocessing was 

performed, including image cropping, white balance, and 

noise filtering processing, which was then marked by trained 

technicians and used for model training and evaluation. 

Among them, 80% of the images were used for training and 

20% were used for testing. The bounding box of the region of 

interest was drawn and exported to YOLO format for model 

development. Once the weed object was detected, the value 

“1” was written to the text file. Otherwise, the value “0” was 

written to the text file. The detection results, including 

bounding box and labels, were displayed in the image (Fig 1). 

 

 
 

Fig 1: Software program flow for weeding system 
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Longzhe et al., 2021 [16] used YOLO V4 network model for 

maize seedling and weed detection. The number of seedling 

images was eventually increased to 8000 images (Table 1) 

using the data enhancement method, which included three 

forms of geometric distortions—flipping, scaling, and 

translation—as well as four types of photometric 

distortions—brightness, saturation, noise, and blur. A field 

seedling data set in PASCAL VOC data set format was 

created using labelling software; 70% of the data set was 

utilised for training, and 30% was used for verification. The 

convolutional neural network's learning capacity is enhanced 

and computation speed is accelerated by the addition of the 

CSP (Centre and Scale Prediction) network to the YOLO V4 

network model. Fig 2 illustrates how to detect weeds and 

maize seedlings using YOLO V4. Considering the small size 

of the weed target, 416 pixels x 416 pixels is the chosen input 

size, with 0.001 as the initial learning rate and 0.9 as the 

momentum coefficient, to increase detection accuracy. There 

are two classes and 20,000 iterations. Out of all the 

parameters, the training effect is greater when the batch size is 

set to 7, based on the image characteristics in the data set and 

the GPU's performance. 

 

 
 

Fig 2: Weeds and maize plants detection based on YOLO V4 

 
Table 1: Number of images generated by data augmentation methods 

 

Data augmentation methods Raw data Brightness Saturation Noise Vague Flip Zoom Pan Total 

Image 800 1600 800 1200 1600 800 800 400 8000 

 

Jiang et al., 2023 [12] used SPH-YOLOv5x model for 

identification and localization of lettuce and weed. Two 

primary components of the vision system are an industrial 

camera and a computer. The computer processed the training 

images after the camera captured them in real time. A 

maximum resolution of 4500 x 3500 pixels and a frame rate 

of 30 frames per second are among the camera's 

specifications. The camera was positioned 500 mm above the 

ground, with a 50 mm horizontal gap between it and the blade 

of the weed knife. Each camera has an acquisition range of 

400 square centimeters, depending on what the vision system 

required. The graphics card installed in the machine was an 

NVIDIA GTX 960. On a server, a workstation including an 

Intel (R) Xeon (R) Platinum 8156 CPU, an NVIDIA GeForce 

RTX 3090 GPU, and 20 GB RAM was used for the data 

training procedure. The following were the training 

parameters: epoch number 150, batch size of 16, and learning 

rate of 0.001. A total of 275 original images of lettuce and 

weed were collected. Data augmentation techniques like flip, 

rotate, chroma adjustment and brightness adjustment were 

carried out which enhanced the dataset to 1488 weed images 

and 430 lettuce images. 372 plant images were used for 

testing, and 116 plant images were assigned to the training set 

for the model. 

 

Control system 
Chang et al., 2021 [4] A primary control board, relays, DC 
motors, DC/DC converter modules, proximity switches, and 
automatic voltage regulators (AVRs) are some of the control 
circuit components of the weeding system. The motor drive 
and control decisions, as well as weed detection algorithms, 
are carried out by the main control unit. Through the 
Universal Serial Bus (USB) port, the digital camera's photos 
can be received by the main control board, which will then 
store them in memory.  
The main control board has two sets of relays linked to its 
general-purpose input/output (GPIO) port. These relays can 
be used to start and stop the motor by receiving the driving 
signal produced from the main control board. The square seat 
in the weeding mechanism is detected using a proximity 
switch (type: normal open (NO)), and the detection signal is 
then input into the main control unit via the GPIO interface. 
Motors and proximity switches, among other circuit 
components, are powered by the 24 V battery.  
The motor control programme is run synchronously while the 
multi-threaded module is turned on during programme 
execution (Fig 3). The text file value is opened and read 
during the while loop. The motor is started by the system 
when the value is 1, and it is stopped otherwise. To start and 
stop the motor, a function called Delay is added to the 
programme along with a delay time. 
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Fig 3: weeding operation program flow 

 

Fig 4 depicts the process of system detection. The mechanical 

weeding device's servo motor is finally controlled by the 

control system, which also self-corrects and aggregates the 

information it has acquired and the stepper motor turns to 

finish the weeding shovel's vertical ascent towards the lift as 

well as its horizontal opening and closing. Furthermore, no 

data is transmitted to the control system in the event that the 

weeds identified by the optical detection system do not satisfy 

the weeding requirements (Longzhe et al., 2021) [16]. 
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Fig 4: Flow chart of control system 
 

Jiang et al., 2023 [13] created a real-time weed knife control 

system for intra-row weeding. Fig 5 displays a flow chart for 

its control algorithm. The conveyor belt on the test platform 

moves at 3.24 km/h, mimicking the motion of a weed wagon 

across a field. The camera records video in real time during 

this procedure and stores it locally on a computer. By 

obtaining the position of the crop and the tag information, the 

computer determines where the weed knife is located within 

the crop. The Arduino microcontroller receives a signal from 

the computer via the serial port when the weed knife is ready 

to enter the crop safety zone. At this moment, the weed knife 

is opened to avoid the crop by means of the Arduino 

microcontroller controlling the cylinder. It takes hardly no 

time at all to open the weed knife after the crop is identified. 
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Fig 5: Control program flowchart of the intra-row weeding system 

 

Intra row weeding mechanism 

Chang et al., 2021 [4] designed double-gear chain transmission 

mechanism which exhibits lower transmission loss. This 

design concept was derived from the mechanical transmission 

principle of the bicycle. Its components include a DC motor, a 

transmission mechanism, a height-adjustable weeding handle, 

and a protective case (Fig 6). The transmission component 

adopts a sprocket, which is made of medium carbon steel. 

This kind of tool set is mounted on a rotating mechanism that 

enables the blade's vertical cutting surface to travel downward 

by a rotating torsion force in order to shovel soil. A DC motor 

was used to drive it. When weeds are detected in the intra-row 

region by the YOLOv3 model, the weeding shovel with a 

reciprocating swinging behaviour engages when the motor 

rotates. 

 

 
 

Fig 6: Prototype of weeding mechanism 
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Longzhe et al., 2021 [16] designed a weeding device based on 

the three-dimensional movement of weeding shovels, so that 

the weeding shovel can complete two operation models, 

including under and on the ground to avoid maize seedlings. 

The simplified model of this weeding device in corn fields is 

shown in the Fig 7. The weeding shovel has both horizontal 

and vertical movement in its three-dimensional spatial 

movement. The weeding shovel's vertical movement is 

primarily accomplished by a linear slide module made up of a 

screw stepper motor, an optical axis, and a slider; a servo 

motor coupled to a reducer and a right-angle gearbox is 

responsible for the horizontal opening and closing movements 

on the left and right. The crank four-bar linkage opens and 

closes the swing arm after converting the rotational motion 

around the x-axis into another rotational motion around the x-

axis. The swing arm is where the linear slide module is 

installed. The swing arm is where the linear slide module is 

installed. The weeding shovel can accomplish three-

dimensional opening and closing movement in space when 

the swing arm and linear slide module function in tandem. 

This produces the effect of weeding beneath the soil and 

preventing seedlings from growing on the soil. The weeding 

shovel is constantly below the ground surface during 

operation and can only accomplish plane opening and closing 

movements to reach the soil when it is positioned horizontally 

during the whole weeding process and is always positioned at 

the bottom by the linear slide module. The method of weeding 

that prevents seedlings from growing beneath the soil is the 

result of doing so. 

 

 
 

Fig 7: Intra row weeding structure model 1.servo motor 2.reducer Motor 6.slider 7.optical axis 3.Right angle gearbox 4.swing arm 5.Screw 

stepper 8.weeding shovel 

 

Jiang et al., 2023 [13] The intra-row weeding device's 

operation is demonstrated in Fig 8. There are three artificially 

defined regions in the agricultural field: the crop safety area is 

area C, the intra-row area is area B, and the inter-row area is 

area A. The weeding knife blade, which is roughly 7 cm wide, 

was used to manage intra-row weeds within the crop row. The 

three locations in which the weeding knife blade is moved 

from left to right are shown in Figure 8b. The weeding blade 

is positioned in the intra-row area driven by the cylinder in 

the "closed" position, and both blades advance in parallel. The 

cylinder divides the blade into the inter-row space along the 

purple dotted line as it gets closer to the lettuce plant at 

position 2. The safety zone C remains intact as a result. The 

cylinder drives the knife blade back into the intra-row space 

once it has passed the lettuce. With every crop of lettuce, this 

procedure is repeated. The weeding knife is closed when it is 

not in the crop area and sinks deeply into the ground. All of 

the weeds in the area are pulled up by their roots by the 

conveyor belt as it moves. 
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Fig 8: Open-closed intra row weed control device: (a) industrial camera; (b) solenoid valve; (c) pneumatic cylinder; (d) mechanical arm; (e) 

weed cutting blade; (f) conveyor belt; (g) aircompressor/pneumatic pump;(electric motor). 

 
Table 2: Different studies on YOLO model based crop and weed detection 

 

Sl. 

No 
Reference Crop Research title Dl models applied Journal name 

1. 
Chang et al., 

2021 [4] 

Vegetable 

crops 

Mechanical control with a deep learning method 

for precise weeding on a farm 
YOLOv3 Agriculture 

2. 
Longzhe et al., 

2021 [16] 
Maize 

Development and Experiment of Intra-row 

Weeding Robot System Based on Protection of 

Maize Root System 

YOLO V4 

Nongye Jixie 

Xuebao/Transactions of 

the Chinese Society of 

Agricultural Machinery 

3. 
Jiang et al., 2023 

[12] 
Maize 

A SPH-YOLOv5x-Based Automatic System for 

Intra-Row Weed Control in Lettuce. 
YOLOv5 Agronomy 

4. 
Quan et al., 2022 

[21] 
Maize 

Intelligent intra-row robotic weeding system 

combining deep learning technology with a 

targeted weeding mode. 

YOLOv3 

 
Biosystems Engineering 

5. 
Dang et al., 2022 

[6] 
Cotton 

YOLO Weeds: A novel benchmark of YOLO 

object detectors for weed detection in cotton 

production systems 

YOLOv3 , YOLOv4 , Scaled -

YOLOv4 , YOLO R an d 

YOLOv5 , YOLOv6 an d 

YOLOv7 

Computers and 

Electronics in Agriculture 

6. 
Ajayi et al., 2023 

[3] 

Sugarcane, 

banana trees, 

spinach, 

pepper 

Performance evaluation of YOLO v5 model for 

automatic crop and weed classification on UAV 

images 

YOLO v5 
Smart Agricultural 

Technology 

7. 
Zhang et al., 

2022 [25] 
Lettuce 

SE-YOLOv5x: An optimized model based on 

transfer learning and visual attention mechanism 

for identifying and localizing weeds and 

vegetables 

Support vector machines (SVM), 

YOLOv5x, single-shot multibox 

detector (SSD), and faster-

RCNN, the SE-YOLOv5x 

Agronomy 

8. 
Fatima et al., 

2023 [8] 

okra, sponge 

gourd, and 

bitter gourd 

Formation of a lightweight, deep learning-based 

weed detection system for a commercial 

autonomous laser weeding robot 

YOLOv5 Applied Sciences 

9. 
Rahman et al., 

2023 [22] 
Cotton 

Performance evaluation of deep learning object 

detectors for weed detection for cotton☆ 

YOLOv5, RetinaNet, Efficient 

Det, Fast RCNN and Faster 

RCNN 

Smart Agricultural 

Technology 

10. 
Gallo et al., 2023 

[9] 

Lincoln Beet 

Chicory 

Plant 

Deep object detection of crop weeds: 

Performance of YOLOv7 on a real case dataset 

from UAV images 

YOLOv7 Remote sensing 

11. 
Osorio et al., 

2020 [19] 
Lettuce 

A Deep Learning Approach for Weed Detection 

in Lettuce Crops Using Multispectral Images 
Tiny YOLOV3 Agri-engineering 

12. 
Pérez-Porras et 

al., 2023 [20] 
Wheat 

Early and on-ground image-based detection of 

poppy (Papaver rhoeas) in wheat using YOLO 

architectures. 

YOLOv3, Scaled-YOLOv4 

(YOLOv4-CSP and YOLOv4-

P5 levels), and YOLOv5 

(YOLOv5-s, YOLOv5-m, and 

YOLOv5-l) 

Weed science 

13. 
Chen et al., 2022 

[5] 
sesame 

Weed detection in sesame fields using a YOLO 

model with an enhanced attention mechanism 

and feature fusion 

YOLOv4 model 
Computers and 

Electronics in Agriculture 

14. Sportelli et al., turfgrass Evaluation of YOLO object detectors for weed YOLO and YOLOv5, YOLOv6, Applied Sciences 

https://www.chemijournal.com/
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2023 [23] detection in different turfgrass scenarios. YOLOv7, YOLOv8 

15. 
Gao et al., 2020 

[10] 
sugarbeet 

Deep convolutional neural networks for image-

based Convolvulus sepium detection in sugar 

beet fields. 

Tiny YOLOv3 Plant methods 

16. 
Ahmad et al., 

2021 [2] 

Corn and 

sugarbeet 

Performance of deep learning models for 

classifying and detecting common weeds in corn 

and soybean production systems. 

YOLOv3, VGG16, ResNet50, 

InceptionV3, 

Computers and 

Electronics in Agriculture 

17. 
Hussain et al., 

2020 [12] 
potato 

Design and development of a smart variable rate 

sprayer using deep learning. 
YOLOv3-tiny, YOLOv3 Remote Sensing 

18. 
Dhruw et al., 

2023 [7] 
Soyabean 

Weed Detection in Soybean Crop Using YOLO 

Algorithm. 

ou Only Look Once (YOLO) v3, 

v4, and v5 
Springer 

19. 
Ying et al., 2021 

[24] 
Carrot 

Weed detection in images of carrot fields based 

on improved YOLO v4 
Improved YOLO v4 

International information 

and engineering 

technology association 

20. 
Jin et al., 2022 

[14] 
Vegetables 

A novel deep learning‐based method for 

detection of weeds in vegetables 

YOLO-v3, CenterNet and Faster 

R-CNN 
Pest management science 

 

Results and Discussion 

The results of weed detection using the YOLOv3 model over 

various time periods are displayed in Table 3. The findings 

indicate that the F1 score ranged from 74.3% to 92.8%, with 

the highest F1-score value occurring between 10:00 and 

13:00, when accuracy reached 95.6%. The weeding system 

has an average weeding efficiency of 88.6% and can detect 

the weed signal at travel rates of less than 15 cm/s, with a 

detection speed of 5 fps of YOLOv3. The average detection 

accuracy rate is 90.7% with an F1-score of 89.5% and a recall 

rate of 90.1% (Chang et al., 2021) [4]. 

 
Table 3: Weed detection with deep learning models in the daytime 

 

Description Evaluation metrics 

Weather Time Precision Recall F1-score 

Cloudy and sunny 

08:00-09:00 0.902 0.829 0.864 

10:00-11:00 0.956 0.901 0.928 

12:00-13:00 0.936 0.885 0.910 

14:00-15:00 0.918 0.854 0.885 

Cloudy 
16:00-17:00 0.903 0.833 0.867 

18:00-19:00 0.832 0.701 0.761 

 

The results used YOLO V4 network model for maize seedling 

and weed detection were shown in Tables 4 and 5. During the 

test, the robot mobile platform moved at 1.0 and 1.2.1.5 km/h, 

respectively, across the test field. Three ridges were 

successfully identified in the images, and statistics were run at 

each speed. The viability of the seedling and grass visual 

detection system is confirmed by the corn seedling detection 

rate, which reaches 96.04% and the weed detection rate, 

which reaches 92.57%, at a forward speed of 1.2 km/h on the 

mobile platform. The findings demonstrated that the weeding 

rates were greater than 81% at a forward speed of 1.2 km/h 

for the robot mobile platform. The soil-avoiding seedling-

avoiding weeding mode has a lower average seedling damage 

rate and root damage rate than the soil-avoiding seedling-

avoiding weeding mode. The average root damage rate has 

dropped by 36.40 percentage points to 3.35 percent, 

indicating that the seedlings that avoid the weeding mode on 

the soil have a good weeding effect (Longzhe et al., 2021) [16]. 

 
Table 4: Detection results of maize seedlings 

 

Moving platform 

(km/h) 
Test serial number 

Actual number of corn 

seedlings 

Detected corn 

seedlings 

Average detection rate 

(%) 

1.0 

1 140 135 

96.40 2 135 130 

3 141 136 

1.2 

1 146 140 

96.04 2 143 137 

3 140 135 

1.5 

1 144 129 

91.97 2 150 140 

3 140 126 
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Table 5: Detection results of weeds 
 

Moving platform (km/h) Test serial number Actual number of weeds Detected weeds Average detection rate (%) 

1.0 

1 71 62 

93.14 2 124 117 

3 89 87 

1.2 

1 190 166 

92.57 2 82 80 

3 111 103 

1.5 

1 130 101 

86.94 2 99 86 

3 80 77 

 

Table 6 displays the analysis of the SPH-YOLOv5x model's 

classification performance for lettuce crops containing five 

weeds: Avena fatua L. (AF), Veronica polita Fries (VP), 

Malachium aquaticum L. (MA), Plantago asiatica L. (PA), 

and Sonchus wightianus DC. (SW). In terms of accurately 

recognising weeds, the model's accuracy rate for lettuce was 

92.9%. For PA, the model's classification accuracy was the 

highest at 98.7%, while for SW, it was the lowest at 89%. 

Nevertheless, the model maintains a high degree of accuracy 

in classifying weeds and lettuce. It is clear from looking at the 

confusion matrix in Fig 9 that the suggested model produces 

accurate identification and classification results for a variety 

of weeds as well as lettuce. In the case of light weed density, 

the weeding knife was effective in removing or burying the 

weeds, as shown in Fig 10a. Nearly all of the weed roots were 

effectively removed from the soil by the weeding knife in Fig 

10b, which shows moderate weed density. On the other hand, 

in Fig 10c, weeds were indiscriminately pushed from the front 

crop to the rear crop by the reciprocating weeding knife, 

which resulted in an accumulation of weeds around the latter 

under conditions of high weed density (Jiang et al., 2023) [13]. 

 
Table 6: Results of lettuce and weeds classification using YOLO models. 

 

Plant species Precision (%) Recall (%) mAP@0.5% (%) F1-score (%) 

Lettuce 0.878 0.878 0.929 0.878 

VP 0.991 1 0.995 0.967 

AF 0.971 1 0.991 0.909 

MA 0.888 0.875 0.933 0.876 

PA 0.973 0.976 0.987 0.94 

SW 0.889 0.85 0.89 0.861 

 

 
 

Fig 9: Confusion matrix of the trained SPH-YOLOv5x model 
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Fig 10: Low, medium and high density weed control effect 
 

Comparison of intelligent intra row weeding systems using 

deep learning models were represented in Table 7. Highest 

recognition rate of 95% was achieved by SPH-YOLOv5x 

compared to 90.7% in YOLOv3 and 92.5% in YOLO V4. 

Weeding efficiency was high in YOLOv3 about 88.6% 

compared to 84.76% in YOLO V4 and >80.25% in SPH-

YOLOv5x. 

 
Table 7: Comparison of the above discussed deep learning models 

 

Model Camera resolution (pixels) Weed control mechanism Recognition rate (%) Weeding efficiency (%) 

YOLOv3 1920 × 1080 Double-gear chain transmission mechanism 90.7 88.6 

YOLO V4 640*480 Four bar linkage mechanism 92.57 84.76 

SPH-YOLOv5x 4500*3500 Weeding knife linkage mechanism 95 >80.25 

 

Conclusion  

Intra row weeding system need intelligent systems like deep 

learning technologies to precisely detect and localize crop or 

weed under occluded and complex environment conditions. 

Three main components of intelligent intra row weeding 

system were: visual detection and identification of crop/weed, 

control system and intra row weeding mechanism. In this 

study, different deep learning models like YOLOv3, YOLO 

V4 and SPH-YOLOv5x were trained and tested. Recognition 

rate of 90.7%, 92.5% and 95% was observed for YOLOv3, 

YOLO V4 and SPH-YOLOv5x respectively. After getting 

signals from weed detection system, the control algorithm 

send feedback signals to weeding mechanism. At last intra 

row weeds were eliminated by intra row weeding device 

through specific mechanisms. Fast actuation of weeding tools 

is possible if deep learning models were adopted. These 

integrated innovative technologies will enhance the weeding 

efficiency of inter-intra row weeders and have a huge scope in 

robotics and automation. Thus it helps in eliminating 

herbicide spraying from the fields, labour requirements, even 

reduce the soil pollution and protects the soil biodiversity.  
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